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ABSTRACT 

The effect of a single or a pair of polarizable 

impurities on the vibrational frequencies of a solid is 

investigated. It is shown that the introduction of impurities 

alters the energy of the crystal due to the coupling of the 

dipoles through the polarization of the impurities and perturbs 

the longitudinal-optical frequencies of the crystal. Both the 

perturbed frequency and the change in energy of the crystal are 

calculated explicitly and the results are examined at very small 

and very large separation of the impurities to demonstrate 

agreement with the literature. 
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INTRODUCTIQN 

The intensity of the vibrational frequencies of a solid 

are affected by external stimuli such as heat and light and also 

by internal stimuli such as impurity atoms or by defects in the 

body of the solid such as vacancies and interstitial atoms. 

Since these imperfections help determine some of the most impor- 

tant properties of crystals their effect on solids has been 

extensively studied in Physics both theoretically and experimentally 

for the past fifty years and has led to increasing understanding 

of the sol id state. 

It is the purpose of this thesis to investigate the effect 

of a single or a pair of polarizable impurities on the vibrational 

frequencies of a solid. The solid is considered to be polar and 

with a single vibrational frequency and the impurity is assumed 

to be a loosely bound electron of a hydrogen-like atom as is 

commonly found in semiconductors. 

The method of investigation involves deriving the force 

acting on a dipole due to the presence of an impurity or pair of 

impurities. The equation of motion for the ions can then be solved 

to obtain the lattice frequency which consists of the crystal's 

natural frequency, and an additional part, due to the 

force arising from the impurities. 
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Summaries of much of the early work in the field of 

lattice dynamical defect problems and extensive study of the 

effect of non-polarizable impurities which are heavier or lighter 

than the host were published by A.A. Maradudin, E.W. Montroll 

and G.H. Weiss.^ 

The effect of a single polarizable impurity atom on 

the frequency of optical vibrations has been previously studied. 

Dean, Manchon and Hopfield^ observed lattice modes bound to 

neutral impurities in GaP, which were due to the coupling between 

the impurity atom and the lattice, and subsequently calculated 

the energies associated with these modes. J. Mahanty and 

V.V. Paranjape^ have also calculated the effect of a polarizable 

impurity atom on the frequency of optical vibration and their 

result agreed with the former work when the appropriate limit was 

imposed. 

The result for the change in energy of the lattice due to 

the introduction of one or two hydrogenic impurities obtained in 

this thesis could be tested by using the Selective Pair Luminescence 

technique devised by H. Tews and H. Venghaus.^ 
i 

In chapter 1 of this thesis the secular equation will be 

derived and solved to find the frequencies of the local modes for 

the general case. The second chapter will describe the details 

of the particular problem of two hydrogenic impurities in a polar 
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crystal. The four terms which constitute the frequency are 

evaluated in the appendix and these results will be given in 

the third chapter. It will also be shown that the result obtained 

for the change in energy of the lattice due to the introduction 

of the impurities reduces to that stated by Johri and Paranjape^ 

when the impurity is neglected, and to the London form when very 

large separation of the impurities is considered. 
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CHAPTER 1 

ANALYSIS OF THE INTERACTION BETWEEN LATTICE AND IMPURITY 

The optical inodes in a polar crystal arise out of 

dipolar oscillations in different lattice cells. When impurities 

are introduced additional coupling, due to the induced polarization 

of the impurities, occurs and the optical modes are perturbed. 

In the absence of an impurity the equation of motion 

for the displacement LI^ which causes the polarization within the 

cell of a crystal can be written -yw^u-t = |2-2'|)‘U-^, (1.1) 
J- ^ 

where y is the effective mass associated with the dipolar oscilla- 

tions in each cell. T(|2-2'|) is a force constant tensor which 

gives the force, due to direct interaction, on the dipole by 

the dipole and which depends only on the separation \l-V\. 

If we introduce impurities additional coupling between 

the and cells necessitates an extra term in the equation 

of motion which now becomes 

Wuy = + EW,2')-u^, (1.2) 
f V 

The force constant term ^(2,2') is dependent on the position 

of the impurities and on 2 and 2' separately. One can use the 

Fourier transforms 

= i//fp E 
k 

0.3) 
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and v(l<) = > 0-4) 

where N is the number of cells and k is a wave vector within the 

Brillouin zone, in the equation of motion (1.2) to obtain 

2 

^ t ^ V ^ V ’ 

+ . (i.s) 

f' ' t' ' 

it*'-? By multiplying by f and summing over I one can obtain the equation 

of motion in the following form 

-y [ w2-a)2(t)] v(t) = Z]^t,t')v(t‘) 

t! 

where W,t’) = 1/N E ^ , 

(1.6) 

(1.7) 

o)(k) is the frequency of the optical modes of the lattice without the 

impurity atom, and 

■yu>2(t) =E^''^'%|2-2'|) (1.8) 

t 

In the case of a single impurity polarization is induced 

on the impurity by the dipole quj at ? and then the energy of the 
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dipole quj, at t' in the field of the impurity can be calculated. 

The total change in energy can be obtained by summing over all 

the lattice sites. The change in energy due to this indirect 

coupling is 

AE = 1/2 E (1.9) 

M’ 

The potential energy of one impurity electron, when the 

impurity atom is located at the origin, due to the dipole in the 

cell is 

V(t) 
-eq 

(1.10) 

where q is the effective charge of the dipole in the lattice cell, 

is the high frequency dielectric constant, r is the electronic 

coordinate and is the coordinate of the cell. 

By second order perturbation theory the change in energy 

can be written 

<lslV(l)lnxn|V(l')lls>[E^-E, ] 

(En-Eis)2-(nco)2 
AE = E 

t,t', n 
(1.11) 
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One can see that equations (1.9) and 1.11) are in essentially the 

same form and thus^t?»'^') can be determined. 

It will be shown in the following chapter that it is 

possible to express ^2,2') as a sum of separable factors which 

correspond to the various electronic transitions of the impurity 

atom during its polarization, 

If one retains only two terms 

ntP) = A{ti(?)T3(?') + T2(2)t4(J')} 0-12) 

where the factor A is evaluated in the following chapter. 

Substituting this into the equation of motion gives 

-y [..2-0.2 = AE (Ti(t)t3(t') + T2(lt)T4a')Jv(t') . 

(1.13) 

Multiplying this expression by T3(]<) and summing both sides 

over t 

P[(O2-4.2] X = A E + 

2 
(1.14) 

Now multiplying (1.13) by T4(!<) and suoning over t gives 
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H[u2-0)2]Y= AE {f4(i<)l'l(l<)X + T4(t)t2(t)Y^ (1.15I- 

f 

Where X= £T3(1<)'V(1<) (1-16) 
t 

Y = E^4{t)-v(l<) . (1.17) 

’ t 

Equations (1.14) and (1.15) are two homogeneous equations 

in two unknowns. By rearranging one can obtain the secular equation: 

y(a)2"0)2) ~ A XI T3(^)TI(^) 

1< 

T 

The roots of this determinant give the longitudinal-optical 

frequencies of the perturbed lattice. If we let then 

- A2ET4(t)Ti(t)i:t3(m2(^) =0. (1.20) 
7>- 

-AET3(l^)t2(^) 

w(o.2 U.2) -Al3T4(t)T: it) 

= 0 

(1.18) 
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This is in the form of a quadratic equation ax^ + bx + c = 0 where, 

in our case. 

a = b = -yA[i: T^d^lT^Ct) +|:t3(lt)Ti(lc)] 

t t t t 

If we use a result from the following chapter which states 

ET4(t)T2(l<) =ET3(t)Ti(t) and ET3(l)T2(t) =ET^(t)Ti(t) 
1< t t k 

(1.21) 

then a = b = -yA 

C = A2[2t,(t)T2(t)]' - A^pT^rntyt)]'. (1.22) 

t t 
Therefore 

y [ 2AZT4 (1< )T2 ( 1^) 1 ±/4y2A2[zT4(t)T2(t)]2-4y2A2{[lT4{r)T2(t)]2-[ET4(t)Ti(^)]2}2 
ij2 =  k k ^ k 1  

p«2 = ± 
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± A5T,(t)Ti(t) 
(U)2-UJ2) = (1.23) 

__ . i).v'/ ■ z\-'/ -Hr—^ 

o) = w <1-A / ,  ± A / ^ 
ft X ! 

t O t 0 

Now 

r 1 
l+x 1/2=1+ 1/2 X - 

f 1 
2.4 

x2 + f 1.3 
,2.4.6, 

x^ +  where -l<x<l 

Thus 0) ^ 0) J 1 - 1/2 
o 

T4(t)T2(i<) .^t4(i<)ti(l<)-| 

t t ‘'“o 

+ 1/8 AE 

t4(l)t2(l<) 
^2 

L k o 
AE 

t4(t)Ti(t)1 

2 •> yai K 0 

Et4(^)T2(t)](Et4(^)Ti(t)' 
+ 2A^      

0 

(1.24) 



-12- 

Thus one can see that the introduction of impurities 

alters the energy of the crystal due to the coupling of the dipole 

through the polarization of the impurities and perturbs the longi- 

tudinal-optical frequencies of the crystal. The method described 

in this chapter enables us to evaluate both the force constant 

term1otJ,2') and the perturbed frequencies. 
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CHAPTER 2 

CALCULATION OF THE CHANGE IN FREQUENCY OF THE LOCAL MODES 

In this chapter the details of the calculation of the 

change in frequency of optical vibration due to two polarizable 

impurities will be described. 

We.will consider two hydrogenic impurities at a distance 

and ^2 the origin where ri and r2 are the respective 

electronic coordinates and and tp are the coordinates of the 

If we are interested in the change in frequency due to the transition 

from the Is to the 2p state then the appropriate symmetric wave- 

function can be written 

and cells. 

The ground state wavefunction can be expressed 

<0| = Ijii5(ri)i^.|j(r2). (2.1) 

(2.2) 

and the anti-symmetric function is 

n2> = " 'J'-]s(^2)4'2p(^i) • (2.3) 

i|)^^ and are hydrogenic wavefunctions defined in Appendix A. 
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From eq. (1.11) the change in energy due to this 

transition is 

AE 
2p ■ E 

t,Z' ,n=rii ,n2 

<0|V(2)|n><n|V(l’)|0>{E^-Ejj) 

(E^-Ep)2-(Tr(u)2 
(2.4) 

<0[V(2)|ri2><n^ |V(2‘) [0>(E^j-Eo) 

<0|V(2)jn2><n2|V(2')|0>(En2-Eo) 

= / . Ii + l2 (2.5) 

1,1' 

However, one can use the expression for V(£), eqn- (B.5), 

derived in Appendix B to rewrite Ij and 12 in the following form. 

Is (?2) 
lRi+ri-%1 |R2+22-S;1_ 

'*'ls^^i^'‘'2p^^2)d^rid3r2 

l^2+^2-%l 



-15- 

1 ^2*’’^' I 
Is 

1 ^2'*"'^ 2”^^ I 1 _ 
Is 

(2.6) 

ai te) hAfi H-lf.) 
LI^2+^2-%I 

+y*Ts*(ri) 

'l'2p('*2)cl^''2 

L|«i+?i-VlJ 

I ^2+^2I X' u 

Ij;^^(r2)d3r2+/ii2p*(?i) 
l^i+ri“%i |_ 

^^5(ri)d3ri( 

“ UJ* ^Ti(U|-)+f2(uj)W T3(UJ, )+T4(UJ, ) ^ *UJ| 
/->• \ /-^ \ I (2.7) 

where aj = 
(E -E ) ni o' 

(E -E„)-(TTo))2 ni 0 
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I 

ot2 

(2.8) 

To obtain these results one must recall 

(r)u^(r)d2r = |l if E=E' 

(0 otherwise 

Substituting eqns. (2.7) and (2.8) into (2.5) gives 

+ %-|Ti(%)-T2(u2)j 

Thus 

where 
-^hdoL_ (2.9) 
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If one compares this expression to eqn. (1.9) which states 

AE = 1/2 ?')•%, 

then W,J') = 4a^f){Ti{^pT3(5^,)+T2(5pT,{^^,)} . Then 

if fi, f2, fa, and f4 are evaluated both the force constant tensor 

3nd the change in energy of the lattice due to the intro- 

duction of two impurities can be obtained. 
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CHAPTER 3 

RESULTS AND CONCLUSIONS 

It is the purpose of this chapter to state the results 

of the calculations performed in the appendices. These results 

enable us to define explicitly the values for the change in 

frequency and the change in energy due to the introduction of the 

two impurities. 

From appendix C we have 

t.t' 1,1' 

^ Nir (12)012) 

a^ 6561 
0 

(3.1) 

]^TI(UJ)T4(5J,) - ^^2 (52)^3(UJ 

l,t 1,1' 

310 
Nira 2 

0 

+ 35B/-^T ifti-Ral + 1315/—y 
\2a,y WJ 

(3.2) 

These results can be substituted into equation (1.24) to obtain a 

value for the perturbed frequency w as a function of the unperturbed 

frequency o)^ and the separation of the impurities. 
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One should note that at that is, when there 

is only one impurity, that by expanding the exponential in (3.2) 

according to the expression 

k=o k! 

and performing the multiplication then all terms containing 

—1— , _i_ and -J— 

and those independent of l^i-R2l cancel and (3.2) vanishes. In this 

case we can use eqn. (1.23) to obtain 

0) 
2 

where C is the numerical factor, as the frequency of the longitudinal 

optical modes perturbed by only one hydrogen-1 ike impurity. This 

corresponds exactly to the result obtained by G. Johri and 

V.V. Paranjape . 

When the two impurities are separated by very large 

distances one can use the expression for the perturbed frequency. 
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eqn. (1.24) to show that the exponential terms can be neglected 

and the remaining term dependent on the separation is of the 

form   '  
1^1-^2 I ^ 

which agrees with the London form. 
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APPENDIX A 

The hydrogenic wavefunctions are 

cose for 
^0 

sinecos<|) for 

sinesincf) for p ^ 

where r,e,4) are the electron coordinates and a^ is the Bohr radius 

1 
2p Oj±l (TT) 

1 

2{2ao)^4 

of the atom. 
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APPENDIX B 

The potential energy of an impurity electron due to a 

dipole in the cell is given by 

(B.l) 

However -v —— =-|i — + j—+k—|  ^ r 
i ax ay az ) [(x-X^)+(y-Y^)+(z-Z^)]'^ 

(B.2) 

(x-x^) (y-Y^) 

(x^X^)3^ (y-Y^)3 (z-Z^)3 

t 
\r-t ->1 3 

I' 

Then the potential energy becomes 

v(l) = ^ 
e 

00 

uj-v 1 

l?-%l 
(B.4) 
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In this problem the electronic coordinate of the first impurity 

is (Ri+ri) and that of the second impurity is The total 

potential energy becomes 

v(2) R, 
(B.5) 

We can now make use of the relation 

1 
d^k (B.6) 

to express 

1 

2TT^ •/ 1^2 

(B.7) 

and 1 J_ (^2+^2-%) 

277^ J k^ 

d^k . (B.8) 

The total potential energy can now be rewritten 
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v(2) = ^ 
e 

 e£ 
2-n^e 

if-(12+^2-%) ^ ik-(Ri+ri-ft|) 

UfV I —^ ^ d^k + ^ d^k 
^ I 2,T2 7 k2 2^2 J k2 

(B.9) 

1 # 6 V ’ * “2- 1/^ 
it-(V22-%) 

k2 
d^k + 
f 

il<-(^i+ri4|) 

k2 
d3k [ (B.IO) 



-25- 

APPENDIX C 

The purpose of the following calculations will be to 

evaluate the terms f2, fs and f4 found on page 15, and to 

calculate Z-/ fi(u|“)f3(u|-,) and ) • 

First, consider 

(ri)d3ri] (C. 

Using the hydrogenic wavefunctions given in Appendix A and the 

expression (B.7), ti becomes 

-ri/2a 
ricose 

,r*'^{2)(2a^)\ 
d^r 

27T 

One can see that only the term remains as / coS(j)d(f) = 0 and 
p 27r ^Po Jo 
/ sin(j)d(j) = 0 cause both the ip and terms to vanish. 

r^o P+i P-i 
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Rearranging 

-'2(2,i2)/=(2)(2a^)'^ ’ L-^n 
[/•■""“I/ 

il<-(^i+ri-'R|) 

k2 
d^k 

->"i/2a r-i 
; — cose d^rj 

  ‘37* Vl ^ ® 
47r3a 32 

0 [/ 
it.(Ri-%) /• -3ri/2a ilt*ri /rj 

k2 / e cose 

r ,e 

0,.^dr.s. sinede d3|< 

(C.2) 

If we now let cose = t and integrate by parts. 

tj(5.) = —d. 
I 2^2a 32^ 

0 {/ -J e   L_J e tdt drid3k 
k^ *^ri a. 

^2 

-3ri/2a -3ri/2a„ , ,, , 
^ fe °ri3cos(kri)^ e °ri3s1n(kri)^'_^^,^ 

k2 a^kr 
0 
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Ti(u^) = ’ 
a^k 

-bri 
e risin(kr^) 

dri d^k (C.3) 

where b = 2a, 

It is now possible to use two well known integrals®’^ 

and 

00 

J"e~^^x^cos{bx)dx = (-1)*^ 

0 

00 

^x'^e’^^sin(bx)dx = (-1)'^ 
0 a3 

3 

b^+3^ 

b 

b^+3^ 

When n = 2, (C.4) becomes 

"^\^cos(bx)dx = 
0 

(-1)2^ 
d3^ 

__3  

^ _a 

ae 

2e^-6eb^ 

(b2+g2)3 

(C.4) 

(C.5) 

(C.6) 
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I'Jhen n = 1, (C.5) becomes 

oa 

J' x'e”^^sin(bx)dx = (-1) 

0 
^3 

=   (C.7) 
(b2+32)2 

Substituting the results into gives 

ti(S-) 
I 

^^ 
2-^7123 3 

0 

/ 
it* (^1-^j) 

k2 

8a 2 / 
^ / 2- 9 

27k (’ 1 + 

4a 
 0 

9k2 

4ka^/3 
4FiT^2 d3k 

3ri 
where rjb = = x 

_ll  V 
2 27r2a 3 

d^k (C.8) 
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Evaluating the gradient e 
^ it* 

-ike ^ 

(,. - 

d^k. (C.9) 

Similarly 

1 
t' z\2^3 f 

^ it- (t2-%) 
ke ^ 

k2 

32k2a„2 
0 

4i<2a Z'v 
) d^k (C.IO) 

T3(U|I ) 
2^/2^2a^3 \-p- 

it' • ) -32k'2a 

k'2 
-) d^k' (c.n) 

d^k' (C.12) 
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We can now make use of the Dirac delta function to 

simplify the products Ti(u|)T3(u^,) and T2(uj)t4(uj,). 

6(x) = lim„^ g-x» 
sin(gx) 

TTX 

i (ky-£„)x 
e dx = lim 

(kx-'fx)^ 
dx 

= lim 2sin(g(kx-£x)) 
(k^-^x) 

- 2Tr6(kx”>fx) (C.13) 

Consider 

e ^xe EN/S ^xe dR 1. 

i (!<+]<')-Ri 
= N e lim. 

g-x» 

-i(l<+lc')-Ref® 

-i (M-) 

= 2TiNe «(k+k') 

-g 

(C.14) 

Therefore k - -k'. 
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If we now rewrite t = ik^ + jk^ + kk^ and use spherical 

coordinates 

kx = ksinecos(|> 

ky = ksinesincj) 

kz = kcose 

A* As /\ 

then, after integrating over <p, only the ii, jj and kk terms of 

the product l<i< remain in the expressions for T1T3 and T2t4. 

If we consider now S tiTq, that is, the summation over 
IP 

all lattice sites. 

(C.15) 

d^k 

and use eqn. (C.12) 
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^ 8NTr3(8)2(32)2a^® /* ik^+dky+zk^) (ik^+jlCy+kk^) 

272g2(2Va^3)2 J |.. L , 

Substitute the spherical coordinates and integrate over cji to obtain: 

y ^ ti(ui-)t3(up) 

1,1' 

83322Nt®a 8 /■ k2 r 

° kV * -g—/ 6 

+ 2Ticos2esine de dk 

82322Nn3ap8 r k2 

^ 2729223.^a^8 J (IT!^!!ZT 
Na^222i r k2 dk 

(C.17) 
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since/'sin3(ax)dx = - + COSIIMI and /■cos"(ax)sin(ax)dx =-“5!!!llaxl 
a 3a (n+1)a 

Also f x^~^dx 
8 

r(p/v)rO+n-p/v) 

r(1+n) 
[0<y/v<n+l] 

enables us to solve the final integral 

X TI(U-.)T3(S->,) 
^ I I 

Na 2221 r 1 
0 1 

31033 [2(1)6 
( 9 r(3/2)r(6-3/2) 
Ua^2y r(i+5) 

0<3/2<6 

(C.18) 

where y = 3, p - U q = 

4a 2 
0 

9 ’ 
V = 2 , n + 1 = 6 

Na 2218 
0 

310 

1 / 32 \ /TT (15) (7)/TT 

_ 2 \(2a^)7 2(5!) 2^ 
(C.19) 

Now r(n+l) = nl if n=0,l,2,3,  

r(n,+Js) = 

2^ 

so r(6) = r(l+5)=51 

r{3/2) = r(l+5|) = ^ 

r{6-3/2) = r(4+}s) = 0-3-5-7)/ir 
24 
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Then 
218 33 Tr 5x3x7 

310 29 5X4X3X2X1 
L 0 

(C.20) 

= N 
a 2218 

0 
310 _a^3 2-J 

^ NTT 7(26) 

^0 3’ 

^ Nir 7(64) 

a (6561/3) 

12N 112 

a„ 6561 0 

Therefore 

■2tl(%)T3(%,) =2^2(U|)t4(u|.) 
t,l' t,t' 

Nir (12)(112) 
6561 (C.21) 

The following calculations describe the method 

terms ET 2(%)T3(UJ,) or X)T(%)t4(%.)- 

l,t’ 1,1' 

used to evaluate the 

These terms are 
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required for substitution into eqn. (1.23) to determine the 

perturbed frequencies. 

If we express in the following form 

(C.22) 

2 / 
(-23)(25)ka„‘* 

W 
1 4Pi7V" 

d^k 

-i28 

2^4^23^335 
d^k 
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Then 

23 Ti(u|)t4(5|.) 
i.i’ 

12216 

23^4g 6310 
0 

E 
t.t’ 

/: 
^ ao 

0^-^) 

c|3k 

it'•(«,-%,) 
ao 

7  
k' 

d^k 

w 

-i(l<+l<')-% it-Si 
e d^kd^k f. ' 

j kk' n + 
. (C.23) 

Using the result from page 30 

2 e e 

Then (C.23) becomes 

it.-Si it-.to 
Zirn^^ e e 6(t+t') 

-213 

TT^ao^3i ® 

e ao8(87r^N) 
7 4k2a„2\6 (1 , 

k2dksin0ded((> (C.24) 
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-2^3 

TT^a 3310 
0 

e ao8(87r3,N) 

7 4k2a,2Y 

dksinededcf) 

^ -213(2TT) 

Ki R; / 
i?.(^,42) 

e an8(8it3N) 
4R2a 2\s / 4k2a 2\< 

V^-9^) 

dksinede 

- 2^3(2 7r)a^^(87T3N) 

TT^a 3310 
0 

1 
7 4k^a 

i k! ^1 “^2 
e 

If we let cose = t 

-2i3(27T)a^3(87r3N) 

TT^a 3310 
0 

I cose 
sinededk 

ikl^i-ftalt 
e dtdk 

(C.25) 
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-2^^(2Tr)(8'iT^N)a^® 

0 

1 
'4Pi^A5 

2sin(k|^i-^2i) 

kiRi-RgI 

-2l‘*(2ir)(8ir3N)a^2 

\ % f sin(k|Ri-R2l) 

4k2a ^ 
dk 

7 4kA 2y 
, ->• ">• 

kiRi-R- 

-2i‘»(2ir)(8n3N)a 2 

Tr‘*3l» 

/sinx dx 
(C.26) 

91^1-^212 
where =    

X = k|Si-^2l 

-2^^(2IT) (87T^N)a 2 
 0 

77^310 

-2^ ^(217) (877^N)a^^ 

W 1 r sinx dx 

11^1- ^2l / 
sinx dx 

x(a^+x^)^ 
(C.27) 
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We can now make use of the following result 
9 

/ 

sin(ax) 

X(3^+X2) 
n+1 dx = 

23 
2n+l 

-a3 
e F 

1 - 
(aa) 

z\\ 
(C.28) 

where a>0, RgS>0, FQ(Z) = 1, Fi(z) = z+2,..., F^(z) = (z+2n) 

F T(Z) - zF ' ,(z) . In our case a = 1, 3 = a and n = 5 and n-1' ' n-1' ' 

From this we obtain 

/; 

sinxdx 

x(a^+x^)® 
e'^FsCc.) 

255; 
(C.29) 

where F5(a) = + Z0a‘* + 185a3 + 975a^ + 2895a + 3840. Therefore 

Et. 
-2^^(27T) (8TT^N)a ^ 

) = ^ 
- 1 

"Ct ' 

(a5+20a‘*+l 85a3+975a2+2895a+3840) 
255; > 

(C.30) 
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where one recalls that a =   
2a 

0 

•2^^(27T)(STT^N)a^^ TT 

TT'+SIO 2 

>-a 

|Rl-R; 255! 
.(a5+20a‘*+185a3+975«2+2895a+3840) 

(C.31) 

One must now evaluate the second term. If we consider 

-blRj-Ral 

and let r = lSi-^2l then 

-br 
2 I = D r 

n / "t)r „ „ T -br) 
= I -e br^ + nr^“ e | 

= b*^e ^’^|b^r'^ - 2bnr'^~^ + n(n~l )r'^”^| • 

(C.32) 



-41- 

Then if n=4 
-b|Ri4; -br, V 

b'*|Ri-R2|'* = b‘*e ■|b2r'*-8br3+12r2| 

-b1”^2! 
n=3 b^iSj-1^2 1^ ” b^e |b^r^-6br2+6r| 

-b|fti4 -br 
n=2 b2|Ri-R2|2 = b^e ib2r2-4br+2\ 

-b|^i42| -br, , 
n=l b|Ri“K2| = be -{b^r-Zb)- 

-bl^i42| -br 
n=0 ~ 

-bl'^i-^l -br 

n=-l   i—+ —+ -^i 
^ ^ b|l^i-'R2l b I r r^ r^^ 

If we substitute these results into the second term of eqn. (C,31) 

we obtain 

b 

255! 
b^ I ^i ^2 I ''+20b 31 ft 1 -^21 5+185b21 ft^ -ft212+975b | ft^ -ft21 +2895 

3840 I 

b|Ri-R2| ) 
+ 
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= —e ] (b^r^-8b^r^+12b^r2) + (20b^r3-120b'^r^+l20b^r) 
255! ( 

+ (185b^r2-740b3r+370b2) 

+ (975b3r-1950b2) + (2895b2) + | 
\ r r2 br^/J 

-br 
be 

255! ( 
)b6r‘*+12b6r3+77b5r2+355b‘*r+1315b3+ + Z^SOb ^ 7^ 

(C.33) 

Thus 

^ ti(U|)f4(u-^,) =y^. t;(U|)T3(U|-,) 

t,£' 
r>- 

“2^^NiTa ^ 
 CL_ 

310 

-3|li-^; 

2a„ 

|«l-1^2|3 
- e 
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+ 355 1^1-^2 + 1315/-^V + 3840 7680. /J_\ 

^ 7680 

\h-% 
(C.34) 
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