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ABSTRACT 

The principal question discussed in this dissertation is the 

problem of characterizing the existence of admissible Frechet differ- 

entiable norms on Banach spaces. 

In the first chapter the basic concepts of normed linear spaces 

are introduced and a summary of differential calculus on Banach spaces 

is given. 

The following three chapters of the paper are concerned with the 

existence of an admissible Frechet differentiable norm on a separable 

Banach space. A construction of such a norm is given for a separable 

space which has a separable dual. Also, it is shown that if such a 

norm exists on a Banach space, then the density character of the space 

equals the density character of its dual. 

In Chapter V, it is shown that if the density characters of a 

space and its dual are not equal, then the space admits a rough norm. 

As a consequence of this, there is no Frechet differentiable function 

on this space with bounded non-empty support. This implies that the 

space does not admit a Frechet differentiable norm. 

V " *' 

Finally, the notion of - smoothness is introduced. It is 

p 
shown that if a Banach space admits a - norm, then it is t ' - 

smooth. This fact is one of the reasons why it is of interest to 

rP determine the class of Banach spaces that admit _ norms. Also, 

P those spaces that are C - smooth are characterized as those for which 

- ii - 



the - topology is the norm topology. The - topology is the 

weakest topology for which the functions of class on the space 

are continuous. Some further properties of these topologies are also 

studied. 
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CHAPTER I 

INTRODUCTORY.CONCEPTS 

1^1 Introduction 

In this chapter we will introduce some of the basic definitions 

and fundamental propositions of linear analysis on which the results 

of this paper are based. However, we will not include all of the 

terminology and ideas used in this paper, particularly those concepts 

employed which pertain to topology and classical analysis. The reader 

is referred to Kelley [lO] and Robertson [l8] for clarification of the 

topological notions used. Royden [l9] is a good reference for concepts 

of classical analysis. The definitions of certain concepts have been, 

more appropiately, deferred until later chapters. 

We will first consider the underlying structure of Banach spaces, 

paying special attention to those aspects of convexity and functionals 

which are naturally involved in any study of differential calculus. 

In particular, we shall introduce the Hahn Banach theorem, which is 

a useful tool in any study of functional analysis. Wilansky [2l] is 

a good reference source for the many concepts of linear spaces mentioned 

in this paper. 

Following the development of the basic,ideas of linear spaces, 

we will go on to define norms and the resulting topologies, which give 

rise to the notion of continuity of functionals. In the light of 

these topologies, we will consider some of the implications of the 
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Hahn Banach theorem, and we also consider those definitions and propo- 

sitions which characterize a normed linear space by its unit,sphere. 

The book by Duhford and Schwarz [?] complements this development very 

well o 

We will conclude this chapter with a study of infinite dimensional 

differential calculus. The concepts of Gateaux and Frechet differen- 

tiability are'developed and several propositions are given which ill- 

ustrate that strong differentials of the norm of a Baiiach space can 

be represented by continuous linear functionals. A complete treat- 

ment of differential calculus on Banach spaces is given in Dieudonne’s 

book [6] and Cudia [5] does a comprehensive survey.of the differentia- 

tion of norms. 

Many of the elementary and well known propositions of functional 

analysis, which follow, have not been proved here; however, standard 

proofs of these theorems can be found in the resource material indicated. 

1.2 Linear Spaces 

1.2.1 Definition 

A linear space X is a set on which is defined addition, +, 

so that (X^ +) is a commutative group; and multiplication by scalars 

satisfying the distributive laws 

t(x + y) = tx + ty and (s + t)x = sx + tx^ 

where t are scalars, x^ y E. X^ and satisfying (st)x = s(tx)^ 

and 1 ^x = X. 

The elements of X will be called vectors and for the purposes 

of this dissertation, the field of scalars will always the reals, de- 

noted i?. 
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1.2.2 Definition 

A subset of linear space is convex if and only if it includes 

the line segment joining any two of its points. More precisely, a 

set A is convex provided tx + (1 - t)y is in Ay for all scalars 

t satisfying 0 < t < ly and Xy y z A. 

1.2.3 Definition 

A set A is called balanced if t A C. A for all scalars t 

satisfying |t| <_ 2^ where tA = {tx | x e A}, 

1.2.4 Definition 

A nonempty subset A of a linear space is called affine if 

tA -h (1 - t) A C, A for all scalars t» Thus, a set A is affine 

if it is a translate of a linear subspace. 

1.2.5 Definition 

The convex hull of a set A is the smallest convex set which 

includes Ay and so, every element of the convex hull of i4 is a 

finite linear combination of elements of A with non-negative real 

coefficients adding up to 1, 

1.2.6 Definition 

If M is a subset of the linear space Xy then a point x z M 

is called an internal point of M if, for each y z Xy there exists 

an ^ > 0 such that x -h ty z M for |t| < y. 

A point X z X is called a bounding point of. M ±t x is not 

an internal point of M. or X - M. A bounding point of M is called an 



extremal of M if it is not interior to any line segment con- 

talned in M, 

1*2*7 Definition 

Let X and Y be two linear spaces. The mapping f of X 

into Y is called linear if 

f(x + y) = f(x) -h f(y)j fCtx) = tf(x) 

for all y c X and t z R* 

If the image space of a linear mapping f is the scalar field 

of Xy namely i?_, then f is called a linear function or functional. 

Associated with every functional is the set {a: | f(x) = 0 and x z X}, 

denoted f and called the kernel of f* 

1.2.8 Definition 

A proper subspace of a linear space X is called maximal provided 

its only superspace is the whole space X, A hyperplane is a trans- 

lation of a maximal subspace. 

In the following propositions we will characterize maximal sub- 

spaces and hyperplanes. 

1.2.9 Theorem 

Let / be a non-identically-zero linear functional, then / ^ 

is a maximal subspace and conversely, if S is a maximal subspace 

there exists a linear functional f such that S - * 

The following lemma shows that a linear functional is almost 

determined by its set of zeros. It is in fact, determined up to a 



multiplicative constant. 

1.2.10 Lemma 

Let /j g be linear functionals such that fis contained in 

. Then there exists a constant t such that g — tf. If g 

is not identically 0^ then t ^ 0^ and /'*' = g^ , 

Proof: 

Let a be a vector such that f(a) ^ 0. Given any vector 

let y = X ~ Then f(y) = Oj hence g(y) .= Oj from 

which we get g(x) = Set t = to get the above 

result. 

1.2.11 Theorem 

If / is a linear functional not identically zero and t is a 

scalar, {x | f(x) = t and x e X} is a hyperplane. Conversely, 

every hyperplane has this form. 

1.2.12 Corollary 

If g are linear functionals which are equal on a hyperplane, 

^ich does not contain the origin, then f - g» 

1.2.13 Definition 

If X is a bounding point of a set Ay e non-zero linear functional 

is said to support A a^ x if there exists a real constant t 

such that f(A) < ty f(x) = ty where f(A) = if(y) | y ^ A} CL R, 

If such a functional exists it is called a support functional of A 

at ■ X, The hyperplane determined by f and t is called the support 
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hyperplane of A at x. 

We note that if / is a support functional ot A at x, then 

so is every positive multiple of /. Conversely, if every support 

functional of 4 at a: is a positive multiple of f, we say that 

A has a unique tangent at x, 

1.2.14 Definition 

Two sets, B are said to be separated by a linear functional 

f if f 0 and there exists a real number t such that fCx) < t < 

for all X e Aj y e B, 

Next we state the Hahn Banach extension theorem which is of 

basic importance. We will also list some corollaries of this theorem 

which are applicable to linear spaces; later in the chapter we will 

indicate some results of the theorem pertaining to normed linear 

spaces. 

1.2.15 Theorem (Hahn Banach) 

Let the real function p on the linear space X satisfy 

0 ^ p(x + y) £. p(x) + p(y)3 

p(tx) = tp(x)j t > 0^ Xj y z X. 

Let / be a linear functional on a subspace Y of X 

with 

f(x) < pCx), X z Y . 

f<y) 

Then there Is a linear functional F on 
X for which 
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F(x) = f(x)3 X e Y; F(x) < p(x)y x z X, 

For a proof of this theorem see [21, p. 65]. 

1.2.16 Theorem (Basic separation theorem) 

Let A and B be disjoint convex subsets of a linear space Xy 

and let A have an internal point. Then there exists a 

linear functional f which separates A and B. 

1.2.17 Theorem (Basic support theorem) 

If a convex set A in a linear space X has an internal point, 

then A has a non-zero support functional at each of its bounding 

points. 

1.3 Normed Linear Spaces 

For the remainder of this chapter we will be concerned with 

normed linear spaces. 

1.3.1 Definition 

A prenorm is a real valued function, 3, defined on a linear 

space and satisfying, for all vectors Xy y and scalars ty 

(1) &(x) > 

(2) $(x -h y) < ^(x) + ^(y)y 

(the triangle inequality), 

(3) ^(tx) = |t| ^(x)y (homogeneity). 

A norm is a prenorm satisfying the following condition; 

(4) ^(x) > 0 if X ^ 0. 
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A linear space together with a norm 3 Is called a normed 

linear space and Is denoted (X^ or X^ the norm being under- 

stood. 

1.3.2 Definition 

Let (Xj be a normed linear space. Then the function d 

defined by, 

d(x^ y) = ^(x - y) 

where x^ y z X^ is a metric, called the Induced metric on X. This 

metric gives rise to a topology on X called the norm or strong 

topology. Robertson [iS] proves that the norm topology is the weakest 

topology on X compatible with its algebraic structure, and in which 

the norm B is continuous. 

Let (X, Bi be a normed linear space and p another norm defined 

on X, Then we say that p is equivalent to B or that p is 

admissible on X^ if the norm topology of p is equivalent to the 

norm topology of B. A useful characterization of admissibility 

results from the following proposition: 

1.3.3 Lemma 

Two norms p and 3 defined on a linear space X are equivalent 

if and only if there exists two real constants, a > 0^ b > 0, such 

that, 

a • Q(X) < B(x) < b • p(x) 

for any x z X, 
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Clearly, a norm p is continuous on (X, If its induced 

topology is courser than the norm topology of S, As above, we can 

characterize the continuity of p, by the necessary and sufficient 

existence of a constant a > 0^ such that p(x) < a • ^(xj for every 

X e X, 

1.3.4 Definition 

A normed linear space which is complete in its norm topology is 

called a Banach space. In particular, the set of reals, together 

with the absolute value function, is a Banach space, whose norm top- 

ology is in fact, the usual topology of the reals. 

1.3.5 Definition 

The closed unit ball of a normed linear space (X^ is denoted 

B and is defined by B^={x\xzX and ^(x) < 1}, 
P 

The unit sphere, denoted S^, is defined by S^={x\xeX 
p p 

and ^(x) = i}. 

1.3.6 Definition 

If (Xj and (Y^ p) are normed linear spaces, the symbol 

L(X^ Y) the linear space of all linear maps from X to Y 

which are continuous with respect to the norm topologies. The norms 

3 and p generate a natural norm a on L(Xj Y)^ called the 

supremum or sup norm, defined by a(f) = sup {p (f(x)) I x e 5^}, 
p 

where f e L(Xj Y). It is well known, for example see Royden [19], 

that if (Y^ p) is a Banach space then L(X^ Y) together with the 

sup norm is also a Banach space. 



10 

Associated with a normed linear space, X, is the space of 

continuous linear functionals on X. This Banach space, denoted 

is called the conjugate or dual space of X. The sup norm on X* 

is called the dual norm and is denoted 3^ to Indicate its relation- 

ship with the norm 3 on X. 

Similarly, we denote the dual space of X*^ by X**^ and its 

sup norm by 3*^. 

1.3.7 Definition 

Let X be a normed linear space. The mapping 4>: X X"^*^ 

defined by ('(f>CxJJ f - f(x) for / in is called the natural 
( 

embedding of X into X**, maps X isometrically into X** 

and, when is onto X**^ then X is said to be reflexive. 

1.3.8 Definition 

Let (X_, Q) be a normed linear space. The weakest topology of 

X under which all the linear functionals of X* are continuous 

will be called the weak topology of X, The terms zj-open, W-contin- 

uous, etc, will refer to the weak topology of X, 

If X is the dual space of some normed linear space 7, then the 

weakest topology of X under which all the linear functionals of 

^(Y) <C- X* are continuous, will be called the weak * - topology of X. 

(The mapping (p is the natural embedding of Y into X*), When 

referring to this topology we will prefix terms with u*. It should 

be noted that the w*-topology is only defined on dual spaces. 
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1«3.9 Theorem (Alaoglu) 

Let (X^ &) be a Banach space. The dual unit ball, 

compact in the w^-topology. 

For a proof of this theorem see [l9; p. 173]. 

We will now consider ideas and results obtained by interrelating 

the topological and algebraic properties of normed linear spaces. 

First, we will consider implications of the Hahn Banach extension 

theorem on normed linear spaces. If the prenorm used in the Hahn 

Banach theorem (p. 6) is continuous in the norm topology then f 

and its extension F are both continuous linear functionals and so, 

it is evident that in normed linear spaces, the basic separation and 

support theorems determine the existence of continuous linear functionals 

with the appropriate properties. 

The following corollaries are immediate results of the Hahn Banach 

theorem applied to a normed linear space (X^ SJ. 

1.3.10 Corollary 

Let Y be a subspace of the normed linear space X, Then 6 

restricted to I is a norm on Y and we have that for every element 

f in Y* corresponds a g ±n X* with 

f(x) = g(x)j x z Y, 

1.3.11 Corollary 

Let J be a subspace of the normed linear space X and let 

X z X be such that 
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inf {^(y - x) I y E Y} = t > 0, 

Then there is a functional f z X* with 

f(x) = 1; ^*(f) = |-; f(y) = 0^ 2/ e 1". 

1.3.12 Corollary 

Let X be a vector not in the closed subspace Y of X» Then 

there is a continuous linear functional f z X* with 

f(x) = 1; f(y) = 0^ y z Y, 

1.3.13 Corollary 

For every x ^ 0 in the normed linear space Xy there is an 

f z X* with 

^*(f) = 1 and fix) - ^(x), 

This proposition shows that there are enough functionals in the dual 

space X* to distinguish the points of X, Any set of functions 

with this property is called total. In view of the following defini- 

tion and theorem, this proposition implies that the weak topology on 

X is locally convex. Similar proofs show that the norm and weak^- 

topologies are also locally convex. 

1.3.14 Definition 

A topology on a linear space is said to be locally convex if it 

possesses a base consisting of convex sets. 

1.3.15 Theorem 

If Y is a total linear space of linear functionals on Xy then 
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the weakest topology on X for which the elements of Y are continuous 

is locally convex. 

1.3.16 Theorem 

For every x in a normed linear space (X, 

^(x) = sup {| f(x) I I / e 

1.3.17 Definition 

A normed linear space is called separable if it contains a count- 

able dense subset. 

1.3.18 Theorem 

If the dual space X’^ is separable, so is X, 

We will now turn our attention to the closed unit ball and the 

unit sphere. It is obvious that every element in a normed linear 

space is the product of a non-negative scalar and some element of the 

unit sphere. In this sense, the unit sphere completely characterizes 

the norm. 

1.3.19 Definition 

Let (X*y be the dual space of (X^ 6/. Then f e X* is 

said to be a normalized functional if ^*(f) = 1, that is, f z 

Since the unit ball in convex and the unit sphere is the set 

of its bounding points. Corollary 1.2.17 and the comments follow- 

ing definition 1.2.13 assure the existence of normalized support 

functionals to the unit ball at every point of the unit sphere. 



1.3.20 Definition 

A norm 3 is said to be smooth if there is a unique normalized 

support functional at each point of S , 
p 

1.3.21 Definition 

A norm 3 is said to be rotund if S contains no line segments. 

or equivalently, every point of S is an extremal point. 
p 

A characterization of rotundity is given in the following lemma. 

1.3.22 Lemma 

Let (X^ 0J be a normed linear space. Then 3 is rotund if 

and only if for every pair of non-zero elements Xj y e X that satisfy 

^(x -h y) = ^(x) + ^(y) we have that x = ty for some scalar t > 0, 

1.3.23 Theorem 

Let (X^ &) be a normed linear space, and let p be a continuous 

norm on X. Then, if is rotund, p is smooth. 

Proof; 

Assume p^ is rotund and p is not smooth. Then, for some 

XQ e there exists two different normalized support functionals 

fl and f2 at XQ, Since fi and /£ different it follows 

that fl is not a scalar multiple of /2* However, it can be 

shown that p* Therefore, 

■f' f2> = 

so, by Lemma 1.3.22, f\ ~ t/2 some t > 0^ which is a con- 

tradiction. 



1.3.24 Theorem 

If p* is smooth, then p is rotund. 

Proof: 

Suppose p* is smooth and p is not rotund. Then, for some 

X 'h u 
y ^ *^p* Therefore, there is a normalized 

X "h "U 
support functional f at —follows that f is also 

a normalized support functional at x and y. But then (p(x)j ^(y) 

e X** would be different normalized support functionals at 

which contradicts the smoothness property of p^. 

1,3.25 Theorem 

A norm defined as the sum of two norms, one of which is rotund, 

is rotund. 

Proof: 

Assume p and OJ are norms, and p is rotund. Define the norm 

a by a.(x) = Q(X) + bi(x), Let x^ y £. X such that x ^ 0^ y 0 

and a(x + y) = OL(X) -f- ct(y). Then 

Q(X) + (D(X) + Q(y) + lii(y) = Q(X + y) + -h y) 

< p(x i- y) + bi(x) -f iii(y) 

Cancelling we get; 

p(x) + p(y) < p(x + y). 

Hence p(x + y) ^ pCxJ + p(y) which implies that x = ty for some 

real t > Oy and the theorem is proved. 



The following definitions and propositions offer a very useful 

characterization of unit balls. 

1.3.26 Definition 

Let (X^ d>) be a normed linear space. For AC.X^ define 

the polar of A^ by 

= {/ I f z X*j I fCxJ I < 1 for all x e A}, 

Similarly, we define the polar of S C X^j by 

— {x \ X z X^ I f(x) I < 1 for all f z B}, 

The following list of facts concerning polars follows almost 

immediately from the definition. A and B can be subsets of X or 

unless otherwise specified. 

1.3.27 Lemma 

i) If A ^ B then A° 3 5°, 

ii) AC(A^)^, 

iii) (A^)^ includes the convex balanced hull of A. 

iv) For scalar t ^ Oj (tA)^ = ^ A^, 

v) If A ^ X*^ then A^ is closed. 

1.3.28 Theorem 

The polar of the unit ball in (Xj p) is the unit ball of X*, 

The converse is also true. 

Proof: 

Only the converse need be proved, since from the definition of 

the dual norm we get immediately that (Bp)^ = 



From this, and the fact that (A^)^ A for any subset Ay we 

see that = (Bp^ 

To prove containment in the other direction, let x e (BpA)^y 

and suppose x ^ then p(x) > 1. By using Corollary 1.3.IS of 

the Hahn Banach theorem, there exists a continuous linear functional 

f such that p*(f) = 1 and f(x) = p(x)y hence | f(x) | > 1. But 

this is a contradiction, and thus we have proven that = B^, 

1.4 Differential Calculus 

We shall now give a summary of the concepts of differential 

calculus on Banach spaces used in this paper. 

1.4.1 Definition 

A real or vector valued function f on a Banach space X is 

said to have an upper Gateaux differential at x z Xy denoted f'Xy 

provided 

(f'x)u = /fa ^ tuj - f(x) 

exists for all u e X, 

We say that f is upper Gateaux differentiable at x if / has 

an upper Gateaux differential at x. If f is upper Gateaux differ- 

entiable at every non-zero element of X, then / is upper Gateaux 

differentiable. 

1.4.2 Lemma 

If a continuous norm p on (Xy ^)y a Banach space, is upper 
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Gateaux differentiable at each point x e then p is upper 

Gateaux differentiable and Cp' (tx))u = (p'x)u for each t > 0 and 

every u z X, 

Proof: 

Using the linear property of p, we have immediately, since 

t > Oj that 

(p' (tx) )u = 
tim 

tim 

p(tx + su) - p(tx) 
s 

p(x + ^ • u) - p (x) 

t 

= (p *x)u • 

This fact, and the result that every non-zero element of X is the 

product of a positive scalar with some element of Sp imply the 

desired result. 

It is obvious from this proposition that the existence of a diff- 

erentiable norm on X is equivalent to the existence of a norm which 

is differentiable at every point of 5p. 

The following results are due to James [s] and Mazur [l4]. We 

first show that the differential of a continuous norm is a continuous 

prenorm. Then, using this prenorm in the Hahn Banach theorem, we 

characterize the support functionals at x z X with respect to the 

upper Gateaux differential of the norm at x. 
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1«4.3 Lemma 

Let (Xj be any arbitrary Banach space and p a continuous 

norm on X, Let x e X_, then p is upper Gateaux differentiable 

at Xj and 

1) (p^x) (y + z) < (p'x)y + (p'x)Zy 

2) Cp'xJ (ty) = t(p'x)y for t > 0_, 

3) (p 'x)y < p(y)i and 

4) -(p*x) (-y) < (p'x)y^ 

for every y^ z e X, 

Proof: 

If ti > t2 > Oj then for y z X 

p(x + t\y) - p (x) p(x + t<}y) - p (x) 
ti t2 

__ to . p(x + t-\y) - t-[ ■ p(x + t<}y) + (t^ - t^) • p(x) 
t\ • 1^2 

> 0^ since it follows from the subadditive property of the norm that, 

^2 • p(^: + t\y) - ti • p(x + toy) 

= p(to^ t t 't^i'^iy) 

^ -(ti - to) • p(x). 

It also is a consequence of the same property that, 

£i£-± iy) - Pfa-* > .p(y). 
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0 Cx 't“ t’V!) ^ 0 (X) Thus we have shown that the ratio   ——  is a monotonically 

increasing function of which is also bounded below. It follows 

that (p^x)y exists for every y, 

1) Let s > Oj then for y^ z z X we have 

2p(x -h ^ (x + z)) 

= Q(X + Sy + X + z) 

< p(x + sy) + Q(X + 3z) 

and so 

ft(x + -K • (y -f- z)) - p(x) 
2 •    

s 

< sy) - p(x) ^ p(x -h sz) - p(x) 
“ s s 

which implies that 

2 . (p’x) < (p'x)y + <p’x)s. 

By using property 2) of this theorem we immediately get the desired 

inequality. 

2) Suppose t > 0^ then for y e Xj we have 

p(x + tsy) - p(x) 
8 

P(f + ey) - pr|j 
— ^  

8 

X 
This implies that (p’x) (ty) = t • (p’ hence, by lemma 1.4.2, we 
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have 

(p*x) (ty) = t • (p*x)y. 

3), 4) These inequalities follow immediately from the subadditive 

property of the norm. 

We note, in passing, that property 2) implies that a norm is diff- 

erentiable at X if the norm is differentiable at each x e S^. 

1.4.4 Lemma 

Let (Xj be any arbitrary Banach space and p a continuous 

norm on X. If XQJ yo e X and a is a real such that 

-Cp'xQy^ (-y^) "S. a < (P*XQ) 1/OJ then there exists a continuous linear 

functional f on X^ such tha;t p"^(f) = f(^Q^ = PTXQV^ and 

f(yo) = a. 

Proof: 

Consider the set of elements 

C = {x I X = txQ + syo}^ s e R 

and define g on C by g(x) = tp(xQ) -h sa. We note that C is, in 

fact, a linear subspace and that g is a well defined continuous 

linear functional on C. 

Let y be an element of then y = tQXQ + for some 

^0 ^ ^ ^ have 

p(xo -h ry) - p(xn) 
r 

= tQ • P^XQJ + L.±.,^.Q^. -h • yo^ 
~ 

- 
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from which we get 

. P(XQ) + (P^XQ) (soyo). 

But, since so<^ ^ so * (p'^o^hQ = (P^S^Q) (8oyQ) 

and 

g(y) = to • p(i)Oo) + soa 

we have g(y) < (p'xQ)y, 

Now by lemma 1.4.3, p'XQ and y satisfy the hypothesis of the Hahn 

Banach extension theorem, so there exists an f e X*,. such that 

f(x) < (P^XQJX for all x z X and f(x) = g(x) on C. It follows 

that f(xQ) = P(XQ) and fCyo) = a. Further, by the previous lemma, 

f(x) < p(x) for all X z X which implies immediately that p*(f) = 2» 

It follows directly that if XQ Z Sp then / is a normalized 

support functional of arg. 

1.4.5 Definition 

A function f on a Banach space X to a Banach space Y 

is said to have a Gateaux differential at x X^ provided 

(ffx)u = /ra: -f tu)^ - f(x) 

exists for all u z X, it follows from Lemma 1.4.2 that a norm p has a Gateaux 

if and only if (p^ ( 
p(x) 

differential at x z X 

every u z Sp). 

■Du exists for 



1.4,6 Theorem 

If (Xj S) is a Banach space, and p is a continuous norm on 

Xy then, if p is Gateaux differentiable at iCQ e X^ ^ 

continuous linear functional, with p^^'p'a:o>^ = 1 and (Q'XQ)XQ = Q(XQ) . 

Proof: 

Consider any z X; using lemma 1.4.4, we can 

find a continuous linear functional f such that, 

p*(f) = I, fCs:^) = P(XQ) and f(yo) = (p^XQ)yQ. 

From this we get 

- ^ ^ - '^y^ - t > 0, 

Hence 

p(xo - ty) - p(xc^) ^ ^ p(x(^ + ty) - P(XQ) 

which implies 

- (P^XQ) (-y) < f(y) < rp' (xo))y 

for all y. 

Since p is Gateaux differentiable at aro we immediately get 

/ = P'XQ and the theorem is proved. 

In the following proposition, we demonstrate the intuitive 

classical notion of the equivalence of differentials and unique tangent 

1.4.7 Lemma 

Assume p is a continuous smooth norm on (X^ . Then p is 
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Gateaux differentiable on S^. 

Proof; 

Suppose p is not Gateaux differentiable at Xn e S , Then 
P 

there are reals, a and bj and yQ £ X such that, 

(Q^XQ) yo > a > b > -CP'XQJ (-y^)- 

Then, by lemma 1,4.4, there are normalized support functionals g 

at XQ such that f(yo) = a ^ b = g(yo)^ But this contradicts the 

smoothness property of p. 

1.4.8 Definition ' 

Let (Xj be any arbitrary Banach space and assume p is a 

continuous smooth norm on X, The mapping y: j called 

the support mapping, assigns to each x e Sp the unique normalized 

support functional at x, 

1.4.9 Corollary 

Assume p is a continuous smooth norm on (X_, ^)» Then (y(xQ))y 

- Cp^XQjy for all y z X and XQ e -Sp. 

Proof: 

By lemma 1.4.7, we see that (p'xQ)y exists for every y z X^ 

and, by corollary 1.4.6, p'XQ is a normalized support functional at 

XQ, Smoothness immediately implies the conclusion of the theorem. 

It is also true that a continuous Gateaux differentiable norm is 

smooth. 



25 

1,4.10 Definition 

Let (Xj and (Y^ p) be any two Banach spaces. The function 

/; X Y has a Frechet differential at XQ e X^ provided there is 

XQ e L(X^ Y) such that for every \j. > 0 there is a 6 > ^ such 

that ^(x - XQ) < 6 implies 

- (f^^o) - ^Q)1 < P • 3TX - XQ). 

We will say that f is differentiable at XQ if f has a differential at XQ. 

The Frechet differential is the Gateaux differential for which 

the limit is uniform with respect to direction, and so, if a function 

f is Frdchet differentiable at x z X, then f is Gateayix differ- 

entiable at X and the differentials are equal. 

If / is Frdchet differentiable at all points of X^ then we 

get a map /'.* X L(X^ Y)^ given by x which is called the 

Frechet derivative of /. Note that the differentiability of f is 

independent of the choice of equivalent norms on X and J. 

Since L(X^ Y) is a Banach space it is possible to consider 

continuity and differentiability of f* and hence higher order deriva- 

tives of /. 

Let denote the Banach space of continuous w-multilinear 

maps. Define LQ(XJ Y) to be Y. Now, since Ln-hi(X^ Y) is 

naturally isometric to L(X, with its sup norm, we may 

consider the n-th derivative of / (if it exists) as a map 
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1.4.11 Definition 

The function f: X Y is said to be of class 0 < n < 

on Xj if f is n-times Frechet differentiable on X and 

(fi) ' f : X -> L (Xy Y) is continuous. If f is continuous on Xy then 
TZ 

f is of class . If / is of class for all riy 0 < n <^y 
oo 

then f is of class C . 

The following propositions illustrate the strong similarity 

between infinite dimensional calculus and calculus of the real line. 

1.4.12 Theorem 

Let Xy Yy Z be Banach spaces, and let /: X -> Y be differen-^ 

tiable at x s. X^ and let g: Y ^ Z be differentiable at f(x) e Y. 

g f: X Z is differentiable at x e Xy and Cg o f) ^x — g^(f(x)) 

1.4.13 Theorem 

Let (Xy and (Yy pj be Banach spaces. Then, 

1) if X Y is a constant, f (x) — 0 for each x e Xj 

2) if f: X Y is a continuous linear map, f is differen- 

tiable and f*(x) = f for each x z X* 

1.4.14 Definition 

By a Hilbert space we mean a Banach space (Xy $) on which there 

is defined a function (Xy y) from X y- X to R with the following 

properties 

(i) (tx\ + sx2> yJ =• t(x\y y) -h a(x2i y) 

(ii> (Xy y) - (yy x) 

(iii) (Xy x) = 

Then 

O f^(x) . 



We call (x^ y) the inner product of x and y. Since ^(0) > 0 

2 
with equality only for x = Oj we have 0 < 

= (x - ty, X - ty) 

- (Xj x) - 2t (Xj y) + t^(y^ y)* 

2 0 
we have 2(x^ y) < \_^(x)~\ -f t [.^(y)s* Setting 

we obtain (x^ y) < ^(x) • ^(y)^ and we see that equality 

can only occur when y = 0 or x = ty for some scalar t > 0, 

This inequality is variously known as the Schwarz or Cauchy - Schwarz 

inequality. 

As an example of a Hilbert space consider the Banach space 

If t > 0, 

^ _ ^(x) 
” ^(y) ^ 

the set of all real sequences x such that I 
k=2 

X. with 

the norm p defined by p(x) = \ ^ Xi 
2 \ Vz 

The natural inner 

product making a Hilbert space is defined by (x^ y) = ^ 
k^l 



CHAPTER II 

A SMOOTH NORM 

2^1 Introduction 

V. Klee in [ll] proves the following: if X is a Banach space 

whose dual space is separable, then there is an admissible norm 

p on X such that the dual norm on X^ is rotund and such that 

whenever ^ sequence in Z*_, f e X^ and f in the 

u?"^-topology of and then ~ f) ^ that 

is f in the norm topology of Klee’s proof is Indirect in 

the sense that he uses a construction, due to Kadec [9], of such a 

norm for C\_0^ l] and the fact that every separable Banach space is 

isometrically isomorphic to a subspace of l]. 

The principle result in this chapter is a direct and constructive 

proof of Klee’s theorem, which uses a modification of Whitfield’s [20] 

approach, suggested by Rainwater [l6]. To this end, we define two 

norms, and on Z^^ the separable dual of a Banach space 

(Xj which generate a third norm p^ that has the properties of 

Klee’s result* The norm on Z^^ derived using the separability 

property of Z is rotund and continuous with respect to the given 

norm 3^ on Z^. The separability of the dual space Z^ is used 

to generate the equivalent norm The norm p^ is defined as the 

algebraic sum of the above norms, and we will show that it is the dual 
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of an equivalent norm p on Z and that its inherited properties 

satisfy the hypothesis of Klee*s theorem. 

Many of the following propositions are slight generalizations of 

ideas used in the construction and may be useful in their own rights 

The proofs that certain functions defined in this chapter are, in 

fact, norms are elementary and will be omitted. On the other hand, we 

will attempt to establish some of the more obscure properties of these 

functions, such as semi-continuity, which we now introduce. 

2.1.1 Definition 

A real valued mapping f of a Banach space X into the reals 

is called tn*-) lower semicontinuous if {a:|x e ^ and f(x) < t} 

is closed in the norm bi*-) topology on X for each real t. The 

following result is useful characterization of semicontinuity: f is 

lower semicontinuous if and only if for each sequence C Xy with 

-► X we have tim ‘inf > f(x). 

If -/ is lower semicontinuous, we call f upper semicontinuous. 

2.2 The Norm 

2.2.1 Lemma 

Let (X^ be a Banach space and A a bounded subset of 

X, Define the real valued function on X*, the dual of X^ 

by bi*(f) '= sup i\f(x)\ I X e A}, Then is ii;*-lower semicontinuous. 

Proof: 

Since A is bounded, we have that ui*(f) exists for every 

/ e X*. 
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Let ^9yj} arbitrary z*;*-convergent sequence in X’^^ that 

is ^ g (weak*), and suppose p > ^, There exists XQ z A 

such that I g(x^) | > di*(g) - Also, by zj*-convergence, there 

exists a positive integer N such that if n > N then (XQ)\- ^ ^ 

but oi*(g^) > I g^(xQ) | for every n, so for n > N we have 

ui*(g ) > (ii*(g) - p, hence tzm 'inf ui‘^(g ) > iii*(g) and the theorem is 

proved. 

2.2,2 Lemma 

The geometric sum of positive real valued uniformly bounded 

U*“lower semicontinuous functions on AT* is zJ*-lower semicontinuous. 

Proof: 

Assume UJ^* are positive real valued uniformly bounded 

functions on which are w*-lower semicontinuous. Define w* on 
oo 

X* by ui*(f) = ^ 2 ^ (ji * (f) and let {/ } be any sequence in AT* 
n=l 

such that (weak*). 

Suppose we are given p > 0* Then, since the oi^* are uniformly 

bounded, there exists a positive integer M such that 
M 

i I 2"" m '*(•/; + f 
n^l 

Further, since the co * are w*-lower semicontinuous, we can choose, 
n 

for every w, a ^(yi) that if m > ^then ^ 

Choose N = max 1^- ^ < M}, Then, if m > we have 
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m 

M 
>. I 

rv^l 
(0 ̂ (f ) n 

> 

M 
I 

yv=l 
2*” [u* (f) 

n 

M 

>. I 
n^l 

2"” u* (f) 
n •' 2 

> iii*(f) - ^ j - a>*(f) -vij 

hence, t'um inf bi*(f^) > which proves that o)^ .is W*-semi- 

continuous. 

2.2.3 Lermia 

Let {h } be a countable set of continuous linear functionals n 

in the unit sphere of the dual space of a Banach space (X^ ^). 

2 
Let B ^ {x \ X £. Bf, and 1 h (x) | < — } and define the functions 

n ' 8 ' n ' n 

on by — sup i\f(x)\ | x e functions 

are equivalent, ii;^-lower semicontiiiuous norms on X*» 

Proof: 

Since — B„ Cl B Cl 5 we have — • ^*Cf) < o)^ (f) < ^*(f) 
72 8 n 8 n •'-n*' 

for every f e X*_, hence is an equivalent norm on X* for 

every n. Each satisfies the hypothesis of lemma 2.2.1 and is, 

thus w-^-lower semicontinuous. 

2.2.4 Lemma 

The geometric sum of equivalent norms, which are uniformly 

bounded above, is an equivalent norm. 

Proof: 

Assume o) are admissible norms defined on a Banach space (X, 8/ 
n 
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and that they are uniformly bounded. Then there are constants 

> Oy b > 0 such that 

a • ^(x) < w (x) s b • ^(x) 
n n 

for every x e X and every n. 
oo 

Consider the function o) defined on X by ii)(x) =) 2 uy (x). 
00 n=i 

It is certainly a norm and, since uy(x) < ^ b • &(x) < b • ^CxJ 
n=l 

2 CL 
and iii(x) > ^ Oil fxJ > • BCxJ for every x e Xj it is admissible 

on X. 

If a Banach space {Xj has a separable dual space, then the 

unit sphere of the dual space contains a countable dense subset. 

Denote such a set by define the norm U3* on X* by, 

OO 

^ I (fK 
n^l 

where the norms are defined as in lemma 2.2.3 using the dense 

set above. Since 1 each n, is an equivalent 

y*-lower semicontinuous norm on X*, 

In the following lemma, we consider an additional property of the 

norm m*. 

2,2,5 Lemma 

Consider the equivalent norm defined above. Suppose {/ } 
m 

is a sequence in X^ such that (weak^) and -> i,y*(f)i 

then there exists a subsequence {f/} d. {/ } such that 
-) m 
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to* (f/) exists for each and to* (f) = to* (f.). 

Proof: 
Consider )}: it is a bounded set of reals and m 

hence has a cluster pointer is finite. Therefore, we can choose a subsequence 

■» * * * ■» -» *** ^ existS. m mi m2 m s-*^ m 
s s 

Similarly, we can choose a subsequence if^ } of {f^ } such that 

s 

S->ao ) exists, and so on. 

Denote the sequence *** Clearly, 

tim 
(0 *(f‘) exists for every n. 

Furthermore, because of the ii;*-lower semicontinuity of the 

we have that to *(f) < Zi^m -inf to *(f ) = Zim to *(f -) for every n. 
n '' n*'c 

Also 

to (f) = I to *rA 
n=l 

and 

= lim = I 2~ 
n=l 

hence Li^*Cf) ZZm to^*('/^J for every n, which concludes the proof. 

2.3 The Norm a* 

We now develop those concepts involved In the development of the 

norm a* mentioned in the introduction. 

2.3.1 Lemma 

Let (Xj be a Banach space and XQ a fixed element of AT. 
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Define the real valued function on X* by (XQ*(f) = 

Then aQ* is w*- lower semicontinuous. 

Proof; 

Let {/ } be a -convergent sequence in X* such that / -»- / 

(weak^)^ Then there exists a constant t such that < t 

for every n. 

Suppose U > Oj and assume, without loss of generality, that 

p < 8t. Then, by U^-convergence there exists a positive integer N 

such that, if n > Nj then | / (XQ) | ^ > | fCxo) | > 0. 

Thus, if n > we have 

^ I- I •" ^ ^ ' 

so 

lf„(xo)V > [/rxoJ]2 - 1-1^ - ^ 

i Lf(^o)l^ - h; 

hence, tim -inf theorem Is proved. 

By a similar proor. it can be shown that the square root of a 

W^-lower semicontinuous function is Zi?*-lower semicontinuous. Using 

this fact and lemma 2.2.2, it is evident that the norm on X* 

defined in the following lemma is zJ^-lower semicontinuous. 

2.3.2 Lemma 

Assume (X^ is a separable Banach space. Then its unit sphere 

contains a countable dense subset, say * Define a* of X* 

by. 



OL*(f) * 

n^l 

2 h 

Then a* is a continuous norm on X*. 

Proof; 

Obviously a'* is a prenorm, since a*(tf) = |t | cx*(f) > 0, 

and QL*(f + g) < a*(f) -h a* (g) for f^geX* and t z R. 

Suppose OL*(f) = 0 for some f e X^. Then f(y^) — 0 for every 

n. Let XQ be any non-zero element in Xj then BfxoJ 
Further, suppose p > 0, Then, since f is continuous, there exists 

a real number 6 > 0 such that if 3 then 

I i j\ ft/ \&(XQ) 
- f(x) I < -TT r. But {y } is dense in S hence there 

pfXQy Yl p 

exists no such that ^^ Combining these results, 

we have that | Ky„^) I < which Implies that 

I f(xQ) I < p. Now, since P and XQ are arbitrary, we see that 

f is identically zero on Xj which proves that a* is, in fact, a 

norm. 

Also, since \ fC^:) \ < ^*(f) • ^(x)^ 

a.*(f) = I ^ 
n=l 

< I r" 62 
\n=2 

\h 

< ^*(f) 

for every f BX^^ which proves that is continuous with respect 

to 3"^. 



2«3«3 Leimna 

The norm a."* on defined above, is U"^-continuous on 

bounded subsets of 

Proof: 

The norm is w^-lower semicontinuous everywhere on j, 

hence we have only to show that it is zJ^-upper semicontinuous on 

bounded sets, since a function which is W^-upper and lower semi- 

continuous is It)"*-continuous a 

Let be a bounded ic?'*-convergent sequence such that f^‘ f 

(Weak^) and suppose y > 0^ Then, since {f^‘} is bounded, there 

exists a positive integer M such that 

for all Further, by a proof similar to lemma 2.3.1, we know that 

continuous function on X*o So, we can choose, for every a 

00 

(y 

M 

n=l 

where XQ is a fixed element of is a W^-upper semi- 

Choose /!/ = max \ 1 < n < M}'. Then, if > Nj we have 

M 
^ \ 4'^ [r/j' + J 

n=l 
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M 

I 
,-n 

+ 
2 

< + y.. 

So, given 6 > 0, and since a7 is a non-negative function, we 

can define 

y = 2 • a^ffj • 6 + 6^ > 0 

and using the above argument, get 

i a^(f) + <S for > Nj 

hence oL^.(f) > tim sup and so is u'^-upper semicontinuous 

on which is arbitrary hence has this property on bounded 

sets e 

2» 3.4 Lemma 

The-norm on is rotund, 
! 

Proof: 

Let fj g- be non-zero elements of such that + g) = 

ot.^(f) + a^(g)^ Then we have, 

oo 

I I • I 3(y„> I 
n~i 

V 
L 

n^l 

,-n 

We observe that {| 1/2^} and {| |/2^) are, in fact, 

elements of the Hilbert space i?-. The factors on the right of the 



38 

equality are the respective norms of these elements and the terms on the 

left is the inner product of these elements. The Cauchy - Schwarz 

ineqiiality for inner products immediately implies that there exists a 

real constant t > 0^ such that tf — g. It follows from lemma 1.3.22 

that CL* is rotund. 

2.4 p and p * 

Suppose (Xj is a Banach space, whose dual space, X*^ is 

separable. Then X is separable, and as we have done above, we can 

fix countable dense subsets of the respective unit spheres, and define 
f 

the associated norms and a* on X*, 

On X* define another norm by 

P*(f) = Ui*(f) + GL*(f), 

Clearly, p"* is u^-lower semicontinuous, and by theorem 1.3.25, rotund. 

Also, since p*(f) - a*(fj + ui*(f) < 2Q*(f) and P*(f) > ^ 

for every / e X*y p* is an equivalent norm on X*, 

In the following lemmas, we will show that this norm, p^, is, 

in fact, the dual norm of an equivalent norm p on X. 

The following lemma, which is actually a generalization of 

theorem 1.3.28, has, to some extent, motivated our use of the concept 

of u^^-semicontinuity. 

2.4,1 Lemma 

Let {'Xj be a Banach space and suppose A ^ X* is a convex, 

balanced and w"*-closed set, which has the origin as an internal point. Then 

rA^jo A. 
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Proof; 

By lenuna 1.3.27, we inunediately see that (A^)^ Zl) A, 

Let f e X* -A. Then, since A is U^-closed, f and A can 

be strictly separated (theorem 1.2.16). That is, there exists XQ e X 

and a real number t > 0 such that fCxQ) > t and Q(XQ) < t for 

all ^ in i4. It follows that | g(x^) | < t for all g in Ay 

since A is balanced, and it follows that is in A^• 

But I f(^^) I > ly hence / is not in CA^J^, and since / 

is arbitrary we have A, 

Since the dual unit ball is convex, balanced and w^-closed, by 

Alaoglu's theorem (theorem 1.3.9), this lemma immediately implies 

that 
p p 

2.4.2 Lemma 

Assume (Xy 3) is a Banach space and that B is a convex, 

balanced subset of Xy which has the origin as an internal point. 

Define the real valued function p on Z by 

Q(X) - inf {t I t > Oy t z R and x z B}, 

Then p is a prenorm on X, 

Proof: 

We first show that p is subadditive. Let Xy y be elements 

of B and suppose r > Q(X) + p(y) y then r = s -h t where s > Q(X) 

and t > ^(y)» 3~^x and t'^^y are in B, 

B is convex, we have 

(x -h y) _ (x -h y) 
r ~ (s + t) 

Then, since 
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S(B~^X) + t(t^^y) 
“ (s + t) 

is in 5, and it follows that (i(x + y) < hence Q(X + y) < ^(x) + p(yJ. 

From the definition we see that p(tx) - tp(x) for t > 0, 

Now, since B is balanced we have that -tx z B if and only if 

tx e B and so p(tx) - p(-tx) = -t p(x) = \t\ p(x) for t < 0, 

This establishes the homogeneity property of p. 

Obviously, since the infimum is taken over positive scalars, 

p(x) > 0 for all X in X, and, thus, the proposition is proved. 

This prenorm is often called the support function of the set B. 

2.4.3 Lemma 

Suppose (X^ 0) is a Banach space, and assume that p* is an 

admissible norm on X*^ the dual of X, Then the support function, 

p of is an equivalent norm on X, 

Proof: 

The fact that is convex, balanced, and has the origin 

as an interior point, is an immediate result of the elementary proper- 

ties of polars; therefore, the above lemma shows that p is a prenorm. 

Since p* is an equivalent dual norm on X*, there exist 

constants Ci > 0 and 02 > 0 such that 

Oi $*(xj < p’^(x) < 02 for all x e X*j 

hence 

Cl • B p^C.02 • E and, using 

the properties of polars proved in lemma 1.3.27 we have 
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so 

By theorem 1.9, we then have 

and it follows that p is a norm, for if p(x) 0 for some x e Xj 

then ^(x) - Oj which implies that x = 0, 

Recall the norm p* defined on the separable dual space at 

the beginning of 2.4. If we define p, as above, to be the support 

function of the polar of the unit ball of p*j then, by the above 

lemma, p is an equivalent norm on X, Further, p* is zj^-lower 

semicontinuous. This implies that its unit ball is w*-closed; 

therefore, theorem 1.3.28 and lemma 2.4.1, together, imply that p* 

is Indeed the dual norm of p. 

2,5 Properties of p and p^ 

To prove Klee’s theorem we have only to show that p"^ 

Clearly, p is a admissible norm on since 

> • ^(x) for every x e X, 
~ ^2 

has the desired convergence property. 

We digress somewhat and prove an elementary theorem due to Phelps 
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[is], which asserts the intuitively obvious fact that if the kernel 

of two functionals, with equal norms, are sufficiently close, then 

either the value of their sum, or the value of their difference is small. 

2.5.1 Theorem 

Suppose > 0 and that (X^ is a Banach space. If f and 

g are in the dual, Z*, and if ^*(f) — ^*(g) =1 and f(x) = Oj 

X e implies that | g(x) | ^ then either ^(f - g) < or 

i(f + g) ^Vi- 

Proof : 

By the Hahn Banach theorem, we can choose h in X* such that 

h = g on and ^*(h) = sup i\g(B^CI /^ >^ |} - Then (h) < 

Furthermore, since g h = 0 on there exists t z R 

such that g - h = t • f, (lemma 1.2.10). Hence &*(g - tf) - 

e*(h) < f . 
Suppose t > 0, If t > Ij then < 1 and S*(g - f) 

= - t~^) g -h (g - tf)~\ 

< 1 - • '^*(g ^ tf). 

Also t = ^*(tf) < ^*(g) + ^*(g - tf) 

so 1 ^ t""^ 

< \,1 -h d»*(g - tf]^ - tf). 

< ^*(g - tf). 

Hence ^*(g - f) < 2 • ^*(g - tf) < U, 



43; 

If 0 < t < then - f) 

< - tf) + 3/^rri - t)f) 

< ^^(g - tf) -t 1 - t 

< ^"^(g - tf) -t B'^(g) - ^ f) 

< 2 ^ ^^(g - tf) < y 

If t < Oj the same proof, using (-t) * / shows that ^(f + g) < e. 

We are now ready to prove that the norm p’^ on the separable 

dual space has the convergence property of Klee’s norm 

2.5.2 Theorem 

If (Xy 3^ is a Banach space, such that its dual ^^) is 

separable, then X^ admits a dual norm, p^, which is rotund and 

which satisfies the following convergence property; if is a 

sequence such that P*(f) a^ud f^^f (weak"^), then 

P*(f - f) ^ 0, 

Proof 

Consider the norm ppreviously defined; it is rotund and is 

the dual of an equivalent norm on X. It only remains to show that 

it has the convergence property- 

Let be a sequence sucli that P^(f) and’ / f 

(weak^) . We can assume without loss of generality that 3"^^/ ) = 1 m 

for every because P^T/ - f). 0 if and only if p fm 
m 

3^r/; ^ 0 for f 7^ 0, If f = Oj then the theorem is trivially 

true. 
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Since bounded, therefore a"^(f^) -> QL*(f) 

since is w’^-continuous on such sets. It follows that o^*(f ) uy’^(f), jmJ 

Suppose does not converge to zero, then neither does 

- f)_y hence given 0 < 6 < there is a subsequence, still 

denoted such that ~ f-^ - Also, using lemma 2.2.5, we 

can choose another subsequence, still denote such that 

oj^ (f) = Zim 0)'* (f ) for each w. n n '^m 

Consider the set {h } associated with the norm oa^ (lemma 2.2.3). n n 

It is dense in hence there are infinitely many n such that 

6 .2 5 
- h ) < ~n : choose one so that —< — Since (f - h J < n 8 ^ HQ 8 ^0 

- h ), we have 
no 

(f) < 8>^(f - h ) no no 
■f co^ (h ) 

no no 

< 
1_ 
no 

< 
4 * 

Now, since (f ) (f)^ we can choose a positive integer 
’ no m no 

6 
M such that 03^ (f ) < no '‘m , if m > M, 

5 
Furthermore., for such M, (f ) ^ 1 f (oc) L for x e B , 

’ ^4 no m '•^m' nn no' 

(lemma 2.2.3), and since ^ have satisfied the hypothesis 

6 6 
of theorem 2.5.2, therefore, either - /z or B>^(f + h, ) < -^ . 

* ’ •'m noi ~ 2 •’m no - 2 

But 6 < “ /) < &*(f - - f) < 
fit •f yyj rLf\ Ti(\ 

TT + if the 
2 8 

first is true. Since this is impossible we have that 3^(/ + h ) < m no 
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for m > M. 

Since (h ) = 1. we can choose such that 
n ^3 

h^^(xo) > 1 - j . then I > 6*r4 + h^^) > fjxo) + >. ^ ? 

SO f (xn) < -i -f 6, for m > M. 

It follows from the w^-convergence of that f(ocQ) < - 1 ■f'Sj 

and we have 

J < 2 - j ■ &= (1 - j) + 1 - S ) 

- ^ T 

which is certainly a contradiction, and the theorem is proven. 



CHAPTER III 

EXISTENCE OF A DIFFERENTIABLE NORM 

3»1 Introduction 

Using Klee’s norm Restrepo [l7] showed the existence of an admis- 

sible, Freehet differentiable norm on a Banach space which has a separ- 

able dual. 

In this chapter, we reach the same conclusion by using a proof, 

due to Cudia [5] which avoids some of the more difficult concepts of 

Restrepo’s theorem. To this end, we develop two theorems, both import- 

ant in their own right. The first theorem shows that the support map- 

ping, Y (P* 25) of the unit sphere of a smooth norm on a Banach space 

X is continuous (if the zJ^-topology is considered in . The 

second theorem^a modification of an ingeneous proof by Cudia, shows 

that, if the support'mapping of the unit ball of a smooth norm is cont- 

inuous, the norm is Freehet differentiable. 

We conclude the chapter with a third theorem in which we show that 

Restrepo's result follows as a consequence of the above theorems and 

the norm defined in Chapter II. 

3.2 Theorem 

Let (X^ 3) be a Banach space and assume that p is a continuous 

Then the support'mapping y: S S 
P P 

smooth norm on X. which 
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assigns to each x e S ^ the unique normalized support functional at 

is continuous if the norm topology of p is considered in 3^ 

and the W^-topology is considered in ^ 

Proof: 

Let X be any element in the unit sphere, Sp, and let {x^CL.S^ 

be any sequence converging to x in the norm topology. 

Assume the does not converge to y(x) in the U*-topology, 

then there is a it?"*-neighbourhood, U, of yCx), such that for each n, 

there is some m > n and y(x ) is not in U, The subsequence {y(x )} 
m m 

has a subsequence, still denoted {y(x^)}, which converges to some 

Q£,B (the closed unit ball of p*), because, B ^ is ii?^-compact (theorem 

1.3.9) and hence sequentially compact. 

But, 

• I (y(x )) (x^ - x) I 
' m m ' 

“ 1 Y (a: J - y(^yy,) I ■mm m ' 

~ 1 1 - y(x ) (x) I 
m 

< p*Cy(x ) • p(x^ - x) 
m m 

< pCx ~ x) Oj 

therefore tim y= g(x) - 1, and g is a normalized support 

functional at x different from y(x). This, however, contracdicts 

the smoothness property of p; hence, y(x ) -► y(x) (weak^), which 
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implies that y Is continuous as specified above. 

3.3 Theoreiii 

Assume p is a continuous, smooth norm defined on a Banach space 

(X, &)» If the support mapping, y: S -*■ S ^ is norm to norm cont- p p 

inuous, then p is Frdchet differentiable on relative to SQ• 

Proof; 

First we note that, since p is smooth, p is Gateaux differentiable 

on Sp relative to iSp. That is, for y ^ 

exists. 

Also, for any Xj y e X and any real t, the real - valued function 

of the real variable 0 < s S 

F(s) = ^(x + tsy) 

is absolutely continuous. Hence, by standard theorems of real analysis 

(Royden [l9], p. 90), F(s) has a finite derivative almost everywhere 

on i], F^(s) is Lebesque integrable on i], and 

.1 
Q(X + ty) - Q(X) = F’(s)ds^ for any Xj y z X and any real t. 

Therefore 

+ tsy -h try)- Q(X + tsy) 
^ ~ r 

- p'^jc + tsy) (ty) 
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exists for s in the complement of some set (depending on y, and 

t) of Lebesque measure zero. Thus for each x, y e and real 

(1) I pfa + ty) - p(x) _ I 

< \( o*(x + tsy)) (y) - (Q^X) y | ds. 

Now, if X and y are on 5^ and 0 < ^ Ij then if |t| < 1, 

P \ x - 
X + tsy 

pCx + tsy) 

< p(x - X -f- tsy) + p 

(2) 

^ io.^t . p((p(x -f tsy) - . p((p(x + tsy) -Dtsy) 
- pra: -f tsy) p(a; tsiyj tsy) 

< u I ^ IPCJ + tsy) - pCa-ll ^ Its! 
” ' ' p{x t tsy) 

< |t.| »lsfi4 

2 

< U + 
t\ -f 
1 - 

ts 

2 

p(g ts.y.) - p(x) 
p (a: -f itsi/j 

Let XQ e 5p and choose \i > 0, Since y is continuous in the 

norm topologies, there is a u) > 0 such that with z z and 

P(XQ - z) < 6(XQ_, M) then p*(y(xQ) - y(z)) < W . According to in- 

equality (2) above, there is a nTiCoj v) > 0 such that if 

|t| < n(aro, P) < 1 then. 
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P ( j < s(xo. u) 

for all y e 5^. Now let to ^ fixed real number euch that 

I to I < n^XQj \i) and let j/o he any arbirary element of 5p, Then 

except for a set of Lebesque measure zero 

,/fan tgsyo) 
|pfao + tosyo) 

exists^ and so, by corollary 1.4^9, 

fan -f tpsyp) 
' pfao f tosyo) 

= P ' pTxo -f- toffy0^ 

hence 

rp' TXQ */• t^sy^)) yQ - rp'rxo/>> 2/0 

= p r 
/XQ -f tng.vn^^ 1 
p("xo •/■ toa2/p>>, ̂ 0 - Cp'rxo.>>> 2/0 

(xg + t()SHo) 
pTxo */• tQSyg) 

2/0 - (y(xQ)t yQ 

for almost all s, since for any positive real 3/», (Q^(x))y = (Q^(rx))y. 

Using the hypothesis of continuity, we see that the integrand in 

(1) is less than U for almost all a. Hence by (1), 

I pfafl + PsysiL.- PIS,OJ _ (p'(xo})yo\ <-li 
>0 
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and so, for all t such that |t| < 

I Pfao ^ | < u 
Now since X\(XQ^ V^) is independent of which is arbitrary, 

the theorem is proved. 

It is an easy consequence of this theorem that P is Frechet diff 

erentiable everywhere and, indeed, that p is of class . 

3.4 Theorem 

Assume that (X^ is a Banach space, whose dual is separable. 

Then X admits an equivalent norm p of class . 

Proof: 

Consider the norm p* on X* defined in the second chapter. It 

is the dual of the norm P which is admissible and smooth; therefore, the 

support mapping Y* is continuous if the w^-topology is 

considered in 5p* (theorem 3.2). 

Let X be any element in 5p, and let ^ be a sequence 

such that X jc. Using the properties of p and p*^ developed in 

theorem 2.5.2, it follows that 

y(x^)- y(x)^ (weak^) 

and 

Q*(y(x^)) -► 9*(y(x)); 

and consequently that 
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p^(y(x ) - y(x)) 0, 
n 

Thus the support mapping, Y» is continuous in the norm topologies, 

and the above theorem immediately implies that P is of class 



CHAPTER IV 

DIFFERENTIABLE. NORMS AND DENSITY CHARACTER 

4.1 Introduction 

The conclusions of this chapter are essentially the converse of 

those of the previous chapter; that is, we will show that the existence 

of an admissible Frechet differentiable norm on.a separable Banach 

space X, implies that the dual space, , is separable. Indeed, 

the first theorem we prove here is the converse of theorem 3.3. 

In it, we prove that if p is a continuous, Frechet differentiable 

norm, then the support mapping of its unit sphere is continuous in the 

norm topologies. 

Following the above theorem, we cite a modification of a signific- 

ant result, due to Bishop and Phelps [l; 2], in which they prove that 

every Banach space is subreflexive. 

We subsequently give a proof of the principal theorem of this 

chapter arid conclude, by indicating some of the important results 

which follow as a consequence of the ideas developed here and in the 

previous two chapters. 

4.2 Theorem 

Let (X^ be a Banach space and assume p is a continuous 

norm on X and that p is Frechet differentiable on the unit sphere 
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of p, then the support mapping y: S -► 5-^ is continuous in the 
P D 

norm topologies. 

Proof: 

This proof is based on the work of Phelps [15]. 

Since p is Frechet differentiable on the unit sphere of p, it 

is Gateaux differentiable there. It follows that p is smooth and the 

support mapping y is well defined. 

If Y is not continuous at some point x e Sp, then there exists 

a sequence {x such that x x but p^CyCx J - yCxJJ does not 
YL V n n 

converge to zero. 

Also, for some \i > 0^ there is a subsequence, still denoted by 

{x such that p"^(y(x ) - y(x)) > 2 . y, for each n, and x x. 

Thus, for each there is some element y e SQ such that (y(x ) - 
n n 

y(x)) > 2 • y, 

- (1 - y(xn) Define a new sequence, ^   * y_^. 
n 

Obviously, since 

\l - ^ I ^ Q*(y(X^)) • 

< p(x ^ x) ^ 0. 
” Yl 

Also, 

p(x + z ) -- p(x) - y(x) z 
n ' n 

> (y(x )) (x + z ) - 1 ~ y(x )z 
n n n 

> (y(x ) - y(x)) z + y(x ) x - 1 
n n n 

o 2 - y(xn) X , , , 
> 2 • y •   —  -h y(x ) X - 1 

M n 



hence 

Q(X -h Zn) - 9 (x) - y (x) z 22. 

y(xn)x - 1 
P 

> U 
IY " 11  

IT^ry7FT‘FT"^p?^ 

> y, for all n. 

( 

But y)(x)z = (p'x)z and we have a contradiction to the fact that p n n 

is Fr^chet differentiable at x, which proves the theorem. 

4.3 Theorem 

Let p be a continuous norm on a Banach space (X, S)• The set 

of normalized support functionals is dense in the dual unit sphere p. 

Proof: 

Suppose / is an element in the unit sphere of p* and that we 

have an arbitrary constant \i > 0. 

Define the set A by 

A = {x \ X e f(x) Oj and p(x) < 

and let C be the convex hull of the union of the sets A and the unit 

bail Bp , and suppose there exists an element Xn in the ball ^p, 

which is also in the boundary of C, Since C has a non-empty interior. 
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it follows, by the support theorem 1.2.17, that there exists a functional 

g in SQ* such that sup ig(x) \ x e C} = g(x^), 

It follows that QCXQ) = 1 = Q(XQ)^ hence on ^ we have 

I g(x) I < ^ and so by theorem 2.5.1, either p*(f - gj < \i or 

p’^Cf + g) < y. Since g and (-g) are both normalized support functionals, 

the theorem is proved if we show that B C\ o.C is non-empty. „ 
P 1 + - 

Choose 2 in 5 such that f(z)> 0 and let a =   ^ . 
P f(z) 

Define a partial ordering on the Set Z = {x | x e and f(x) > f(z)} 

as follows: x > y if 

i) f(x) > f(y) 

ii) p(x - y) < a(f(x) - f(y)). 

Assume that W is a totally ordered subset of Z. By (i), the 

net of real numbers, if(x)^ x e , is monotone (and bounded), and 

hence converges to its supremum. From this fact and (ii) it follows that 

f/ is a Cauchy net. But X is complete and so P/, in fact, converges 

to a point y in 5p. By continuity of / and the norm, we have 

for every x In f/ that f(y) > f(x) and p(y - a;j < a(f(y) - f(x))^ 

thus y is an upper bound for W. It follows, by Zorn*s lemma, that 

there exists a maximal element XQ of Z. 

Since XQ e Bp Cl we need only show that XQ is in the boundary 

of C. 

If not, then XQ is in the interior of and there exists 

t > 0 such that XQ -h tz is an element of C, Also, from the 



definition of Cy there exists elements y in and x 

and a constant Sy 0 < s < 1 such that 5?o ~ 

Thus 

f(z) < f(xQ) < f(xQ + tz) = sf(y) < f(y)^ 

and so y e Z. 

Also 

thus 

However, 

y— XQ - (1 - s) (y ^ x) -h tZy 

p(y - X ) < 

< 

< 

< 

(1 - s) p(y - x) + t 

(1 - s) (p(y) + p(x)) + t 

(1-8) (1 + -) + t 

(1 — S + 't) (1 -h  )m 
U 

f(y - ^0^ = (1 - s) f(y) -h t • f(z) 

> (1 - S -h t) f(z) 

so 

p(y - XQ) £ a(f(y) - f(xQ)) 

in Ay 

- s)x. 

hence y > XQ> which contradicts the maximality of XQ, thus XQ is 

in the boundary of C, 
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4.4 Density Character 

4.4.1 Definition 

The density character of a Banach space denoted dens Xj is 

the minimum cardinal number of a dense subset of X^ or equivalently, 

it is the maximum cardinal number of a discrete subset of X, 

The following theorem implies the converse of theorem 3.4• 

4.4.2 Theorem 

If a Banach space (X^ admits an equivalent norm p of class 

C *^ then dens X = dens X*. 

Proof; 

Suppose a norm p on X fulfills the above hypothesis, then, by 

theorem 4.2 the support mapping Y: 5p* is well defined and 

continuous. Clearly, the image of y is the set of all normalized 

support functionals. 

Let D be a dense subset of ■S'p with card D - dens Z, and let 

f be any arbitrary element in SAlso, choose U to be any 

neighbourhood of /. 

By the previous theorem, the set of normalized support functionals 

is dense in S Q*; hence, since (uj is open, by continuity, and 

D is dense in 5p, it follows that there exists x e D /O y'~^(u)j 

with y(xj e U, Since f and U are arbitrary, this implies that 

y(D) is dense in Thus, dens X* = dens = card y(D) = card 

D ~ dens X. Since dens X < dens X^ is always true, the theorem is proved. 



This theorem completes our first main objective of presenting a 

simplified but comprehensive proof of Restrepo^s main result. 

4,>5 Theorem (Restrepo) 

A separable Banach space (X^ admits an equivalent norm p o 

class C' if and only if is also separable. 

435.1 Corollary 

Let (X^ be a separable Banach space. Then, if both 3 and 

3^ are of class C'j (X^ is reflexive. 

A more direct application of this theorem answers the question of 

existence or non-existence of admissible C^-norms on well known 

separable Banach spaces. 

4.5.2 Corollary 

The topology of OQ can be defined by a norm of class C’, 

icQ is the Banach space of all sequences real numbers such 

that X ->• 0, with the norm 3 defined by ^(xj = suv {x }). n ^ n 

4.5.3 Corollary 

The topology, of C\_Oj 1~\ cannot be defined by any norm of class 

C^(CiO^ I] is the Banach space of continuous functions on l] 

with norm ^(x) = ■ sup {xCt) \ 0 < t < 1})» 

4.5o4 Corollary 

There does not exist an admissible Frechet differentiable norm 

(£' is the Banach space of all sequences such that for 



I I 
8 

60 

X \ <0°, with norm ^(x) n' 

oo 

I I 
n=l 

). 
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CHAPTER V 

DIFFERENTIABLE FUNCTIONS AND ROUGH NORMS 

5.1 Introduction 

Thus far in this paper we have established that the existence of 

an admissible Frechet differentiable norm, on a separable Banach 

space, is characterized by separability of the dual space. Also, in 

the previous chapter, we considered more general Banach spaces and 

proved that the existence of such a norm implies that the density 

characters of the space and its dual are equal. It follows from the 

results of this chapter that the converse of the previous statement is 

not true in general. We will now consider an alternate characterization 

of the existence of admissible Frechet differentiable norms, in terms 

of admissibility of rough norms. 

Using the concepts of Leach and Whitfield [l3], we will prove, by 

a construction, that if the dual space X’^ is strictly denser than the 

space ^3 then there exists an admissible rough norm on X. Also, 

we will show that the existence of an admissible rough norm on a Banach 

space X implies that there does not exist any real - valued Frechet 

differentiable functions on X with bounded non-empty support. Cons- 

sequently, we obtain the main conclusion of the previous chapter. 

5.2 Rough Norms 

In this section a norm which is rough (and thus nowhere Frechet 



62 

differentiable) is constructed for a Baiiach space Z, provided X* 

is strictly denser than X. 

5o2«l Definition 

Let A be any set, then A will be called large (with respect to 

a Banach space X), if card A > dens X; otherwise A will be 

called small» 

5o2o2 Definition 

A norm p defined on a Banach space X has a uniformly discontinuous 

upper Gateaux differential, if there exists y > (9 such that for 

every x s X ' and 6 > 0, there exists Xi, X2 and y in X such 

that p(xi - x) < p.(xz - x) < 6.J p(y) = 1 and (p'x2 - P'xi) y: > y. 

We will use the adjective rough to mean the property described 

here* 

5 e 2 o 3 Theorem 

If (Xj is a Banach space such that dens X < dens X’^j 

then, given r > 0^ there exists \i > 0 and a subset E of X^ 

such that E intersects every open ball of radius v in a large set 

and if f, g '£■ E and f ^ g then - g) > y. 

Proof; 

Let El be a subset of which is maximal subject to: 

i) El contains the origin of Z^. 

ii) If f e S’IJ then -f s Ei. 

iii) If f ^ g ^ then - g) > 
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Such a maximal set evidently exists by Zorn’s lemma. It is also 

maximal even if the condition / e E implies -/ E E\ is omitted. 

For any real number let E_^ = {t • f | f z Ei) * Since 

oo 

\J Ej is dense; it follows that card Ei = dens hence E\ is 
n—1 
large, so there exists a positive integer n such that E\ intersects 

the open ball of radius n about the origin of in a large set. 

Denote the ball by B (0). 

Let h be any element of X^ and let be the open ball' 

of radius n + ^ with center h.. Let f z E\ C\ ' Then, 

(f + h) £ B 1 (h), Now, either f + h z or (f + h) E^ . In 

either case, by the maximality of there exists g z E^ such that 

2 ■ 

^^((f + h) - g) S ~2 first case, choose g = f + h) . Further, 

(h - g) < (f + h) - g) + ^*(f) < ^ + n and we have that 

g £ B 1 (h) 
n+h ^2 

The above gives a correspondence between the elements of 

E-\ (\B (0) and B , ( \ E, , This correspondence is one-to-one; for, ^ n n+h h 

if fl £ ^1 n B^(0) and fi ^ /*2J they correspond to 

g\y 92 £ \ r\ E^^-^Ch) 3 respectively, then 

^"^(gi - 92^ = - fz) + gi - (h + fiJ + (h + f2) - 92^ 

> 3^r/i - fz) - ^*(gi - (h + fiJ) -e>((h + f2) - g2^ 

> L _ 1— 
n 2n 

1__ 
2n 0, 

and we.have that g\ ^ gz- 



This one-to-one correspondence implies that card (Ej 0 B^(0)) < 

card ('S’l 0 ^ ) j therefore E^ intersects every open ball of 

2 
radius n + -^ in a large set. 

' I 
Choose a positive integer m such that r- > —, then, by ana- 

logous reasoning, we have that ^ i intersects every open ball 

2 mi2n+\) 2 
of radius — in a large set. Setting y = m("2n"+ YT* Proves 

theorem. 

Under the same hypothesis, define a real-valued function p 

as follows; let F={f\fEE i and ^^(f) ^ 1} 
h(ln+\) 

the 

on (X, 

E I is as defined in the above propositions and define P 

4(2n+l) 
on X by 

p(x) ='-inf {t \ f(x) < t fbr all except a small set of 

s in F}. 

The following lemma will prove useful in later theoreins concerning 

the function p. 

5.2.4 Lemma 

For every x in Z, the set {/ \ f z F and f(x) > pCxJ} 

is small. 

Proof: 

Let X e Zj then, by the definition of the function Pj. it is 

obvious that, for each positive integer n, the set if \ f s F and 

f(x) > p(x)‘ 2- —} is small. It is also easy to see {/ \ f e F and 

OO I 7 

f(x) > p(x)} = {J {/I f ^ F and f(^) > p(x) + —} and is small> 
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since the coutnable union of small sets is small. 

5.2.5 Theorem 

The function p is an equivalent norm on (X_, Q), 

Proof: 

Suppose Q(X) < 0 for some x e.X, then there exists a constant 

t < 0 and a small subset G of. F such that g(t) > t for g z G 

and f(x) < ^ for f e F - G. By property (ii) of Ei, we have that 

f e F - G implies that -f e G hence card (F - G) 5 card G < card (F - G) 

which is a contradiction. Hence, Q(X) > ,0 for all x in X, 

Obviously, for real p (tx) - \t\ p(x)^ since f(tx) = tf(x) 

for all / in F. 

Suppose p(x -f- y) > p(x) + p(y) for some Xj y in X» Then the 

set {/ I / e F and. f(x + y) > p(x) 4- p(y)} is large. This set is 

a subset of {/ } f(x) > p{xj} {f | fCy) > p(y)} which must also be 

large. But this implies that at least one of the set in the union is 

large, which contradicts the previous lemma. Thus, p(x + y) < p(x) + p(y) 

for all Xj y E X and p is a prenorm. 

Let f be any element of F, then, for all x in X, 

f(x) < ^^(f) * ^(x) < ^(x) which implies that p(x) < ^(x). 

Let X be any element of X and f be a linear tangent functional 

at X, that is, f e and ffxJ =-^('xJ, The set F intersects 

i 3 
the open ball of radius about , in a large set, and for each 

g dn this set, we have. 
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1 1 
hence g(x) > — ^(x) , It follows, by lemma'5.2.4, that Q(X) > ^ ^(x) 

for all X X and the theorem is proved. 

5.2.6 Lemma 

Let G = {g \ g ^ F and 9’^(g) > then G is a small subset 

of F, 

Proof: 

Let D be a small dense subset of X, and for each ^ t-F 

define P(x) —if \ f e F and f(x) > p(x)}. 

Let g be any element of G^ then there exists an element iCo 

in D such that g(xQ) > ^(XQ)^ hence g z P(XQ). It follows that 

GO. I iK z.D}. But, by lemma 5.2.4, each of the P(x)'s 

is a small set, hence [J{P(x) \ x z D} is small, which implies that 

G is small. 

5.2.7 Theorem 

The norm p has a uniformly discontinuous upper Gateaux differential 

P ' • 

Proof: 

Recall from theorem 1,4.3 that, for x^ u z X and any scalar 

(1) p(x + su) > p(x) + s • (p'x)u. 

Let X z X and 6 > 0 (assume without loss of generality that 

<S < '+"ij subset F = if \ f z F - G and f(x)> p(x) - -j-} 

is a large set, so we can choose f, g ^ F such that f 4= g. The dual 

norm satisfies p"^(f) > for all / z X*^ so, in particular, 

2 
we have P^(f - g) > 4(2n + T) thus choose u ^ X 

2 
p (u) = 1 and (f - g)u > J) • 



67 

Now, if t > 0^ 

Q (x + t • u) > p"^(f) • p(x + t • u) > f(x + t • u) 

> p(x) + t * f(u) - ~ . 

From (1), by letting s = -t and x = x -h t • u we get 

p(x) > p(x + t u) - t * (p ^ (x + t • u)u), 

hence 

p(x + t • u) + p(x) > p(x + t - u) + p(x) + t • f(u) - 

so 

-t • p'(x + t • u)Uj 

p^ (x + t • u)u > f(u) §1 
2t 

Similarly, 

for t > 0 

- p^ (x t- • u)u > - g(u) 
6£ 
2t 

for t > 0, 

Adding, we get 

(p ' (x + t U) - p VX - • u) )u > f(u) - g(u) 

1 
^ 4(2n -h 1) 

_ ^ 
t 

§1 
t ^ 

for t > (9. 
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we can choose t < 6 such that -j— < 
t- 

Thus we have demonstrated the uniform discontinuity property of 

2 
y = ~4 (~2n ''+ "i) = x - t • u and X2 = x + t • u. 

1 
8 (2n + 1) 

p' , with 

5o3 Bounded Non-empty Support 

The main purpose of this section is to prove that if a Banach 

space X admits a rough norm, then there does not exist any Frechet 

differentiable real-valued functions on X, with bounded non-^empty 

support. 

5.3.1 Definition 

Let / be a real valued function on a Banach space J. The 

support of / is the closure of X - f or, equivalently, 

{x I f(x) ^ 0 and x e X}. 

The property defined in the following theorem is equivalent to the 

condition of uniform discontinuity. 

5.3.2 Theorem 

Let X be a Banach space with norm p such that p' is uniformly 

discontinuous, then for every, x in X and 6 > 0 there exists an 

element p in X such that p(v) < 2 and p(x + t ® v) > p(x) + y • 

where y is any number satisfying the uniform discontinuity condition 

arid \t\ < p(x). 

Proof: 

Given x e X and 6 > we can choose X\^ X2 and u from X^ 

so that p(xi - x) < j p(x2 - x) < p(u) = and (p'xi - p'X2)u > y 

C
o
m
-
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Let V = u - ((Q ^xi + p *X2)u) 
X 

\(p 'xi + p ^X2)u\ 
2 

2(px) 

By (1) of the previous theorem. 

j then p(v) < p(u) + 

(p'xi)u < p(xi + u) - p(x\) < p(u) - 1, 

Similarly (p^xz)u < 1^ hence 0 < p(v) < 2, 

If p(v) = 0 or 2j then (p 'xi)u = (p'x2)u^ which is a contradic- 

tion of the above condition, hence 0 < p(v) < 

Suppose t'Is a real such that |tj < pCx) and let 

- 7 t « (p 'Xl . p 'X2^U 
^ ~ ~ 2(px) ’ 

then t < s < 2 and we have 

X + t ' V = s - X + t • u 

(1) 

(ii) 

= S • (Xi + — • u) + (x - Xl) 

= S. (X2 + — • u) + S “ (x - X2_) 

Now, by (1) we have 

(iii) 

and, similarly, 

(iv) 

Assume t ^ 0, then by (i) 

p(X2 + — U) > p(X2) -f- — P ' (X2)U s s 

p(xi + — u) > p(Xi) -f- — P ' (xi)u, 
S " s 

p(x + t • v) > p(s • + — • u)) - p(s . (x - Xl)) 
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> s* (^(xi) + — • (p'xi)uJ - s • (by iv) 

> S • (p(x) + t (p'xi)u) - s • 

iy 6 
> p(x) + — • (p'^l - p'X2)U - S • -K 

s ^ 

> p(x) + t . ^ - 5. 

Assume t < 0^ then by (ii) and (ill), 

p(x + t ’> v) > s - (px) + t • (P^X2)T^ ~ ^ ' ~2 

> p(x) + . (p^Xj - p^X2)U - S 
6_ 
2 

> p(x) + \t\ • - 6 

which is again the desired inequality. 

5.3.3 Theorem 

Suppose a Banach space X has a norm p with a uniformly dis- 

continuous upper Gateaux differential p '. If f is a real valued 

Frechet differentiable function on X arid f(0) = 0, then there 

exists X in X such that 1 < p(x) < 2 and f(x) < p(x). 

Proof: 

Let ]i be a number which satisfies the uniform discontinuity 

condition and choose a sequence ^ ^ ^7 induction to satisfy: 

(1) XQ = 0 

(2) f(x^) < p(x^) 

(3) - X^) < 1 
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(4) pCxyi+i) > p(x^) + ^ . p(xn+i - X^J 

2 
(5) (Xy,4.\ - X ) > -7T M n±i n - 2 n 

where = sup {^(y - x^) [ y s X and Xyi+i = y 

satisfies (2), (3), and (4)} 

Assume Q(X ) < 1. for all n. then ip(x )} is bounded above. n n 

Also, by definition, {p(x^)} is a monotone increasing sequence. It 

follows that {pfx^J} converges and is thus a Cauchy sequence. 

Also, by (4), if m then 

p(x - X )< p(X - Xjji_i) + ... + (Xyt^i - X ) 

Q 
- ^ ^ ^~ ^ ^ 

1 — • (p(x ) - p(x ))j, 
y m n 

hence also a Cauchy sequence. X is a Banach space, therefore, 

there exists x ±n X such that x -> x. p(x) < 1 and f(x) < p (x). 
n ^ 

Since f is Frechet differentiable at x, there exists a constant 

6 > 0 such that, 

f(x +'u) - f(x) - (f'x)u < y • j 

p{u) < 6. We may also assume that 6 < 1 and 6 < 2 (px). 

By the previous theorem, there exists V in X such that 

p(v) < 2 and 

— — \ i\ 6 
p(x + t • v) > p(x) y • ^ y • ^ j 
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whenever \t\ ^ ^(x). 

— 6 
Choose t = (sgn (f'x)v) • , Then 

“ — 6 
Q(X + t • v) > p(x) -f IJ • ^ 

> pfxj u •   g - 

and 

f(x + t ^ v) < fCx) + (f'xj (t ’ v) + \x - 

< f(x) + t > (f'x)v -h y • -T -, 

< ^ V ■ 

and we obtain the following inequalities, 

(2*) f(x -h.t • v) - p(x + t • v) < fix) - p(x)' < Oj 

(3') p(x + t . V - x) < Ij 

and 

(4') p(x + t ’ v) - p(x) > ^ . pit • v). 

But p and f are continuous at x, therefore, ^n-hi ~ ^ t t ^ V 

satisfies (2), (3) and (4) for large n, hence > ix + t • v - ^^)^ 

for large n. It follows that > y * ^ for all large n, since, 

pix + t • V - x) > pix + t • v) - pix) 

6 
> y • g 



for all large n, by condition (5). hence p (Xn+i ~ ^ ^ ^ 

This certainly contradicts the convergence assumed for 

Therefore ^ some n; let ng be the smallest such 

integer, then x satisfies the requirements of this theorem. 

5.3.4 Theorem 

If a Banach space , 3^* admits an equivalent norm p such that 

p' is a uniformly, discontinuous upper Gateaux differential, then there 

does not exist a Frechet differentiable real-valued function f on 

with bounded non-empty support. 

Proof: 

Suppose f is a Frechet differentiable real-valued function, with 

bounded non-empty support, 5. Then, since S is non-empty, there 

exists some element x in 5, such that f(x) 0, Also, since S 

is bounded, there exists a scalar r > 0 such that S is a subset of 

the open ball of radius r and center x. 

Define g: X R by 

g(x) = 2 
2 - f(r • X + x) 

f(x) 

then g is the composition of / and several C functions, hence g 

is Frechet differentiable and g{0) - 0 and g(xJ =- 2, whenever p(x) > 

Further g(x) > pCx)^ whenever 1 < p(x) < 2 which is a contradic 

tion of the results of the previous theorem. 

5.4 Differentiable Norms 

The following proposition follows as a consequence of the above 
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theorem and the fact that the composition of a norm with a real function 

oo 

of class C , which has bounded non-empty support, is in the same 

differentiability class as the norm and has bounded non-empty support. 

The existence of such a function on the reals is elementary, and the 

proof is omitted. 

5.4ol Theorem 

If a Banach space (X, Q>) admits an equivalent rough norm, then 

there does not exist an equivalent Frechet differentiable norm.for X. 

This theorem, in conjunction with the construction of the second 

section of this chapter gives an alternate proof of theorem 4.5.2. 

For non-separable Banach spaces, the condition dens X = dens X*^ 

although necessary, is not sufficient to prove the existence of an 

admissible Frechet differentiable norm. For example, using the fact 

that the usual norm on is rough, one could take the cartesian 

product of X H, where . H is a Hilbert space with dens if > dens 

together with the norm defined as the sum of the component norms in Z^ 

and in H» Clearly, dens (Z^ x H) = dens (Z^ x H)^ , and the norm 

is rough. Thus, by theorem 5.4.1, Z^ x H does not admit a Frechet 

differentiable norm^ 

Certainly any space with Z^ or C[jO^ l] as a subspace does not 

admit a norm of class . As a matter of fact, in order that a Banach 

space admit a C^-norm, it is easily seen that not only the space but 

also all its subspaces must have the same density character as their 

respective duals. 



It is not known whether this condition is sufficient to imply the 

existence of an admissible 6/1-norm on the space. One might reasona,bly 

conjecture that such is the case. In particular, it is conjectured 

that all reflexive spaces admit a C^-norm, A corollary to the follow- 

ing theorem implies that this conjecture may indeed.be true. 

5.4.2 Theorem 

Let (Yj be a Banach space that admits a rough norm, then 

there is a separable subspace of Y that admits an equally rough norm. 

Proof: 

Let p be a rough norm on Y, and P > any number satisfying 

the uniform discontinuity condition of p'. 

Now, define a sequence of finite - dimensional subspaces of Y 

as follows: 

Let Xi be any 1-dimensional subspace of Y, then given X2^ X^^ 

cjioose a finite sequence, ^such that 

pCx.J == for every i, and for all s in X with pTs/ = 1 there 
^ Yt 

1 
exists an. i- such that p(z - X.) < . V n 

Using the rough property of p, for each 1 < i < m j choose 

2 
X.'. Xand u. in Y such that p(u,) =1. p(x.^ - x.) < —, 

2 
p(x." - X.) < — , and (p^x.” ~ p'xY'Ju. > y. Define as the 

subspace generated by {wi>3 ... j {ac' >3 {x” >3 {u 
71 ^ Tii in Til   71 n 

■QO 

Let X = t-im X = T (j Z j. Clearly, X is a subspace of Y. 
?v=l 
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Since finite dimensional vector spaces are separable, we have that 

for each n there exists a set C which is countably dense in X , 
n n 

oo 

Let (J ^ J > then D is countable and dense in hence X is 
n=l 

separable ® 

To complete the proof, we shall show that p restricted to X 

is a rough norm. 

Let y be any non-zero element of X and 6 > 0 and set 

pCy) p(y) ' 
Now, there exists a positive integer HQ 

such that < 6IJ and further, since increasing 

- 1 
sequence, there exists n > such that p(y\ - x)< — for some 

no 
X € X ^ with p(x) = 1» 

n- 

We know, from the inductive process, that there exists x. e. X n 
2 

such that p(x. ) = 1 and p(x - x. ) < — . Associated with x. , 

there are elements or I , x". , and u. in d. X such that 
'Z'O 'Z'O 'Z'O n+i . ^ 

1 1 
p (x. - xi,) < — . p(x. - x'l ) < — and (p^x”. - dx\ )u. ^ Uj 

hence 

p(y\ - x'l ) < p(y\ - x) + p(x - X. ) + p(x. - x" ) 

no 

< 6i . 

Similarly, p(yi - xi ) < 6i 
'^0 

Let y ' = x'. 
^ ^0 

p (y) and y” = icV • p(y) and u =? ^ then 
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Q(y - y’) = Q(y ^ p(y) - x\ » piy) 
■0 

= p(y) » p(yi - x\ ) 
^0 

< p/yj » Si 

£ S 

Similarly, pfy - y”) < S> Also, p(u) = p (u . ) = 1 and we get 
'Z'O 

(p'y" - p'y')u = (p'(x'! . p(y)) - p'(xi • p(y)))u. 
^0 'Z'O "^0 

= (p'x'i. - p'xi )u. > y, 
^o ”^0 'Z'O ■ 

which concludes the proof. 

5.4.3 Corollary 

If a Banach space Y admits a rough norm, then Y has a separable 

subspace.with a non-separable dual. 

Proof: 

By the above theorem, Y. has a separable subspace X which admits 

a rough norm. It follows from theorem 5.4.1 and theorem 3.4 that 

is non-separable. 

It follows that no Banach space for which every separable subspace 

has a separable dual, admits a rough normi In particular, we have the 

following: 

5.4.4 Corollary 

No reflexive space admits a rough norm. 
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It is not known whether theorem 5.4.2 can be generalized to show 

that a Banach space that admits a rough norm has a subspace with any 

prescribed density character that admits a rough norm. 
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CHAPTER VI 

- SMOOTHNESS 

6.1 Introduction 

In the latter part of the previous chapter, we related the question 

of existence of Frdchet differentiable functions, with bounded non- 

empty support, to that of existence of an admissible norm of class C'\ 

Using the same ba^ic approach, we will develop the concepts of cP- 

smoothness, due to Bonic and Fromptoh [4], and consider the problem 

of approximating a continuous norm by one of a higher differentiability 

class, 

In this development, we will define the notions of C^-smooth top- 

ologies on Banach spaces and illustrate how they might be useful in 

characterizing the existence of admissible norms of any differentiability 

class ® 

We end this chapter by summarizing some of the conclusions of the 

paper, 

6»2 Smooth Functions 

Denote the set of functions f: X R which are p times Fr^chet 

differentiable and is continuous, by (X^ R). Clearly, the 

elements of (X^ R) are of class cP. 
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6c2^1 Definition 

A Banach space X is said to be smooth, 0 < p < °°, if there 

is a (X^ R) - function on X with bounded non-empty support, 

6o2,2 Definition 

The C'^-topology on X_, denoted is the topology obtained by 

taking as a sub base all sets of the form 

if-^(a, b) \ f E C^(X, R); a, b e i?'}, 

where R ' denotes the extended reals. 

The r^-topology of a real Banach space X^ is related to the 

product space topology over the reals. Let R^ = R^ for each 

f £ (X^ R)j and define a mapping T: X R {R^ | f eC^} by 

T(x) = Jl{f(x) \ f £ Now, since the dual space is total and 

X^. C^CpiX^ R)j we have that if T(x) = T(y) then f(x) = f(y) for 

every / e and, in particular, for every / e and so x = y. 

Hence T is a one-to-one embedding; consequently, X may be,regarded 

as a subset of II{7?^ j f £ It is then evident that the - 

topology on X is identical with the relative topology of X as a 

subset of this product space® 

Denote the weak and norm topologies of a Banach space (X^ by 

and r. respectively, 
p 

The following theorem is an iramediate.result of the fact that 

X^dc'^XX^ R) CL C^(x^ R) CL ... C^(x^ R) and 3 £ (X^ R). 
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6o2o3 Theorem 

Let (Xj, be a Banach space, then the weak, norm and 

topologies have the following relationship: 

1) ro = r^; 

2) rP-^1 CZ 0 < p < 

3) r d_ for every p > 0; 

and 4) C. T . 

The following theorem suggests that a study of topologies may 

be useful in establishing the existence of admissible norms of different 

differentiability classes. 

6.2.4 Theorem 

If 3 is an element of Cp (X^ R)^ then P = 

Proof: 

By the previous theorem, P CZ F^^ hence, we need only show 

containment in the opposite direction. 

Let Z7 e F and let x be some element in U» Then there exists 
p 

S > 0_y such that the open ball, denoted 5, with center x and 

radius 5 is contained in U, Certainly, 3“^r-6j is a P- 

neighbourhood of the origin, so, by proposition 1, p. 9 of Robertson 

[l8], x+ 6) is a F^-neighbourhood of x. But 

X + 6) ='Sj and the theorem is proved. 

6.2.5 Corollary 

If p is an equivalent norm on the Banach space (X^ 3/, then 
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r - hence if p e c'^(X^ R)^ . 

Since every continuous linear functional is F^-continuous, we 

have the following: 

6» 2« 6 Theorem 

The continuous linear functionals on (Xj 0 < p < and 

(Xy r^J are precisely the continuous linear functionals on 

We note, without proof, the following important property of the 

topologies. 

6.2.7 Theorem 

For PJ 0 < P < the weakest topology on X which makes every 

element of (X^ R) continuous is the F^ topology. 

From the definition, a base element of the F^ topology, 0 < p < 

is of the form, 

{x 1 ^k ^ 

/j, e cP(X, R), k = 1, 2, ... n}. 

In the following theorem we indicate,an equivalent base for the 

topologies. 

6.2.8 Theorem 

F^ has a base o f sets of the form {x | fCx) > Oj f> Oj and. / e (X^ R). 

Proof: 

Consider a base element of the F^-topology. It is of the form 

{x \ < fj^(x) < s^; e R; and 

e C^(X^ R)^ k = .ly 2^ . .. j n}. 
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Qo YL 
Choose (j) in C (R ^ R) such that ^2^ ••• ^ ^ ^ 

^ ^ ^k^ for all k^ and <^ = 0 otherwise. Let d map X 

into X be defined by d(x) = fXj x^ ... ^ xj. Clearly d is 

continuous linear isomorphism, so 

/ = (j) o Cfi X f2 X f^J O d 

is in C^(X^ R)^ and 

_{x I I ^ 

The following two theorems are important generalizations of some 

of the ideas used in the previous chapter and, in the same sense:, are 

used to develop a partial characterization with regards to the existence 

of admissable norms of higher differentiability classes, 

6.2 e 9 Theorem (Bonic and Frampton) 

The norm topology, T^, of a Banach space X is equivalent to the 

topology, induced on X by the functions in (X^ R)^ if and 

only if X is C'^-smooth. 

Proof: 

Suppose X is C^-smooth, U is any open set in X^ and x is 

in U, Let f e (Xj R) be a function with bounded non-empty 

00 

support. By composing f with C -maps, as we did in theorem 5.3.4, 

we can find g e Cp (X^ R) with g(x) ^ 0 and {x | CL U. 

Since P C_ P(X^ R) open sets are open and we have that the 

norm topology is equivalent to the F^-topology. 
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Conversely, assume that the two topologies are equivalent. Then, 

using a construction similar to that in the proof of theorem 6.2.8, define 

a (Xj R) function with bounded non-empty support on X, It follows 

that X is (7^-smooth. 

6.2.10 Corollary 

Suppose X is a Banach space which admits an equivalent norm 

contained in (Xj R)^ then X is C^-smooth. 

The contrapositive of this corollary is useful in proving the non- 

existence of admissible norms of higher differentiability classes. 

For example, consider the following: 

6.2.11. Theorem 

If p is not an even integer arid n > p then and Xp 

Yl 
do not admit norms of class C . 

Proof: 

Kurzweil [l2j showed that if p is not even and n > p then 

and £p are not C^-smooth. 

It is not known if the converse of corollary 6,2.10 is true. However, 

we feel that this is a reasonable conjecture, or, at least, some simple 

modification of smoothness might yield the converse. The following 

theorems certainly support this conjectures. 

6.2.12 Theorem 

oo 

The Banach space OQ is C -smooth. (This was proven by Boriic 

and Frampton [s].) 
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The following theorem was proved by N. H. Kuiper. (See Bonic and 

Frampton [4; p® 896]). 

6.2.13 Theorem 

OO 

The Banach space ag admits an equivalent C -norm, 

6.2.14 Theorem 

If p is an even integer, then the usual norms of and 

oo 

are of class C . A proof of this result can be found iii Bonic. and 

Frampton [4], 

The following result follows from corollary 6.2,10, 

6.2.15 Theorem 

If p is an even.integer then and are C -smooth. 

As we have illustrated above, corollary 6,2,10 provides an easy 

way of obtaining smooth functions on a Banach space, via the norm. In 

the following, we consider further applications of this method. 

6,2.16. Theorem 

oo 
A finite dimensional Banach space is C -smooth. 

6.2.17 Theorem 

If is separable, X is C^-smooth. This follows as a consequence 

of theorem 3,4 and corollary 6.2.10. 

6.2.18 Corollary 

If (X^ is a separable Banach space, then if and 

only if X^‘ is separable. 



6e2^19 Theorem 

CJO 

A Hilbert space is C -smooth. 

Bonic and Reis [4; p. 897] have shown that if a Banach space and 

its dual space admit C^-norms, then it is a Hilbert space. In view 

of the above conjecture, it is likely that if a Banach space and its 

dual are 6'^-smooth then it is a Hilbert space. 

6 c 3 Summary 

In this and the previous chapters, we have considered several 

properties which might be satisfied by a real Banach space. We. have 

used these properties to characterize, at least to some extent, the 

existence or non-existence of admissible Frechet differentiable norms. 

For a separable space we established that a 6'^-norm is admitted 

when and only when its dual is also separable. There is, however, 

no characterization of those separable spaces that admit a C^-norm, 

p > 1, We have. also established for separable spaces that ah admisi- 

sible rough norm exists if and only if the dual is non-separable, 

The non-separable space is more difficult. However, we have shown 

that the existence of a Frechet differentiable norm implies that the 

density character of the space and all its subspaces are equal to the 

density character of the respective dual spaces. It is also necessary 

that neither the space nor any of its subspaces admits a rough norm. 

We do not know if a complete characterization is possible in these 

terms; although, the evidence seems to infer that it is, or at least. 



that some modification of these properties might be useful in achieving 

such a characterizatione 

We have also established that, if there does not exist a (X^ R) 

function with bounded non-empty support on Z, there does not exist 

an admissible Frdchet differentiable norm for X. It is still an 

open question whether the existence of a (X^ R) function with 

bounded non-empty support implies the existence of a admissible 

norm. However, this seems to be a reasonable conjecture. Similar 

results hold for functions and norms of higher differentiability classes 

as we have seen in our study of smoothness and we indicated 

evidence inferring that the above conjecture may, in fact, be true in 

this situation as well. 
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