
LAKEHEAD UNIVERSITY

CC++ - A CONCURRENT

OBJECT-ORIENTED PROGRAMMING

LANGUAGE

BY

He Huang @

A THESIS SUBMITTED TO

LAKEHEAD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICAL SCIENCES

THUNDER BAY, ONTARIO

OCTOBER, 1993

© He Huang 1993

ProQuest Number: 10611859

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro

ProQuest 10611859

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106 - 1346

Bibliotheque nationale
du Canada I'^l National Library

of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa. Ontario
K1A0N4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1A0N4

Your (He Votre r6(6rence

Our tile Notre rdt^rence

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L’auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes interessees.

L’auteur conserve la propriety du
droit d’auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0-315-86174-6

Canada

ABSTRACT

Developing concurrent object-oriented programming (COOP) languages becomes an

attractive research area since COOP languages are more suitable for simulation of

real world objects and their interactions. After reviewing fundamentals of COOP

languages and analyzing existing COOP languages, we propose a concurrent object-

oriented programming language: CC-f-f-. CC-f-d- is an extension to object-oriented

programming (OOP) language C++. It is extended by introducing five keywords,

and incorporating process concepts and communication and synchronization mech-

anisms into C++. Meanwhile it retains the syntax and semantics of C++. The

language distinguishes class (or passive) objects from process (or active) objects.

The class objects are the ordinary objects in C++. The process objects, however,

are coarse-grain concurrent entities. Each process object has a sequential control

thread and an optional public interface that can be accessed by other process ob-

jects. The communication and synchronization between interacting process objects

are accomplished through remote function call(RFC), which is an extension of remote

procedure call(RPC)[Han78]. Two types of RFCs, blocked RFC and unblocked RFC

are distinguished in CC++. The blocked RFC, along with guarded function and

forward mechanism performs synchronous message passing. The unblocked RFC,

however, provides a way to express asynchronous message passing. The guarded

function is based on guarded commands [Dij 75], and is introduced for expressing and

controlling indeterminism. The language has been implemented as an experimental

system running on UNIX. The important objectives of CC++ are ease of program-

ming, simple syntax, clear semantics and strong expressive power.

Ill

ACKNOWLEDGEMENTS

I would like to express my thanks and appreciation to my supervisor, Dr. Xining Li,

for his guidance, advice and financial support throughout this thesis.

I would to thank my wife for her understanding, encouragement and typing the

draft during many evenings and weekends she spent on this thesis.

I am grateful to the Natural Science and Engineering Council of Canada, the

Senate Research Committee of Lakehead University and Lakehead University Library

for their support.

Finally, I would like to thank my external examiner Dr. Brain Unger and internal

examiner Dr. Maurice Benson for their comprehensive comments.

IV

Contents

Approval Page ii

ABSTRACT iii

ACKNOWLEDGEMENTS iv

List of Figures vii

1 INTRODUCTION 1
1.1 Object-Orientation 2
1.2 Concurrency 5
1.3 Communication and Synchronization 10
1.4 Thesis Outline 13

2 SURVEY OF RELATED WORK 15
2.1 Approaches in Designing COOP Languages 15
2.2 Communication and Synchronization Models 17
2.3 COOP Languages Based on C-|—h 27

3 CC++: A COOP LANGUAGE 33
3.1 Process Declaration, Creation and Execution 34
3.2 Remote Function Call 39
3.3 Mutual Exclusion and Indeterminism 43

4 APPLICATIONS 48
4.1 Prime Sieve 49
4.2 Computing Factorial 51
4.3 Bounded Buffer 53
4.4 Readers and Writers 55
4.5 Shortest Job Next Scheduler 56
4.6 Game of Life 58

5 IMPLEMENTATION ISSUES 61
5.1 Execution Model of CC+-f 61
5.2 Preprocessor 65
5.3 Run-Time System 69

6 Conclusions 73

Bibliography 77

VI

List of Figures

1.1 Classification of processes ... 6

2.1 Interaction between a client and a server 18
2.2 Conversations between two peers 19
2.3 Interaction between processes and a monitor 21
2.4 An RPC between a client and a server 23
2.5 Control transfer between processes in rendezvous 24
2.6 Actors, their behaviors and interactions 26

3.1 Explicit and implicit control of a process object . 38

4.1 Pipeline diagram of prime sieve 49
4.2 A tree structure of iV! 51

5.1 A synchronous communication transaction 64
5.2 Possible state transitions of a process object 71

vn

Chapter 1

INTRODUCTION

The object-oriented programming (OOP) paradigm is having a profound impact

programming methodology. OOP fundamentally changes our way of thinking. In

conventional procedure-oriented (POP) paradigm, data and operations which manip-

ulate the data are separate concepts and are separately defined. Control sequences

must be specified to manipulate the data. With this paradigm, a given problem is

decomposed into a sequence of tasks and procedures, the solutions are found out by

executing these tasks and procedures on a set of data. By contrast, OOP paradigm

glues data and related operations into one entity, and specifies collections of coor-

dinated objects to simulate components of the problems to be solved. For a given

problem, entities, which are either physical objects or abstract concepts, are consid-

ered first. The relations among the entities are then considered. The solutions are

obtained through constructing templates of objects and establishing their relations.

OOP paradigm provides people with a method of solving problems using object

modeling. It is thus very suitable for describing or simulating real-world objects

as well as their relations and interactions. However, real world objects usually do

not exist in isolation. Many objects may coexist and interact or communicate with

one another. Hence, an OOP language should be a concurrent language in nature.

Designing concurrent object-oriented programming(COOP) languages becomes an

attractive research area.

A concurrent object-oriented programming language is a language combining

object-orientedness and parallelism. It should be suitable for expressing and model-

ing the concurrent computation by object-oriented approach. COOP languages are

essentially the same as concurrent object-based programming (COBP) languages

with the exception that latter do not support any inheritance.

The major aspects in designing COOP languages are object-orientedness, concur-

rency, communication and synchronization. Although objects support concurrency

in nature, some issues arise when we incorporate concurrency into programming. In

this chapter, fundamental aspects in COOP language design, and issues that arise

due to the combination of object-orientation and concurrency are discussed.

1.1 Object-Orientation

Supporting object-orientation makes the COOP languages differ from other concur-

rent languages. In this section, we give a brief review on the subject of object-

orientedness. The more detailed discussion can be found in [KM90, Boo91, Weg89,

Tho89, Weg90, Pok89, MNC+91].

In an object-oriented system, objects are the basic run-time entities. An object is

a collection of operations that share a state. The operations are a set of functions or

methods which determine the messages to which the object can respond. The shared

state is private data that records the effect of operations. A public interface of an

object determines accessibility of users to the object. Object-oriented programming

languages are then built on this object model.

There are three important properties which characterize the essence of the object-

orientedness. They are abstract data type (ADT), inheritance and polymorphism.

2

An ADT is a user-defined data type which glues the passive data and active

operations into a single entity. In most OOP systems, an ADT is defined by the

construct class. A class is a template from which objects can be created, and that

other classes can reuse through inheritance. A class consists of two parts: specifica-

tion and implementation. The specification part describes a user interface and the

implementation part specifies the control sequences of manipulating data. In other

words, an ADT encapsulates data and a set of operations. Encapsulation provides

at least three advantages in programming. First, encapsulation makes data hiding

possible. It provides protection to the state of an object. Secondly, encapsulation

enhances modularity. It promotes the reusability of existing code, and encourages

separate compilation. Third, encapsulation separates users of an ADT from its im-

plementer. A user needs no longer to know the implementation details of an ADT.

An implementer of an ADT, on the other hand, can ignore where the ADT is to be

used. This makes implementation and application of an ADT relatively independent

of each other and in turn makes software development and maintenance easier.

By contrast, procedure-oriented programming systems view data and operations

as separate entities. A data type is simply a data structure. Data can be accessed

by arbitrary operations without any protection. Hence it is the programmer’s re-

sponsibility to apply correct operations on data. This results in tightly bound of

implementation and application of data types. The modularity is therefore greatly

reduced.

Inheritance refers to relationships among classes. Through inheritance, one class

can share the structure and behaviors defined in other classes. Inheritance is accom-

plished through the class hierarchy which specifies the definition and implementation

3

of one class to be based on that of other existing classes. Two kinds of inheritance

are distinguished: single inheritance and multiple inheritance. Single inheritance

refers to the hierarchy in which one class is based on a single class. Multiple in-

heritance corresponds to the hierarchy in which one class is based on two or more

classes. With single inheritance, a class which wants to inherit from many classes

must be defined many times. The derived classes of this kind have a deep structured

hierarchy. The deep structured hierarchy sometimes makes it awkward to use. With

multiple inheritance, this can be done in one step. However, multiple inheritance

raises another problem: a base class occurring more than once in a derivation. This

is solved in C-f + by declaring the base class as a virtual class.

Inheritance promotes reusability. It encourages programmer to construct new

ADTs by reusing the code of existing ADTs. Without this property, each minor

variation of a class would require code replication. The pith and marrow of the in-

heritance mechanism is allowing users to construct their classes reusing some related

existing classes without introducing unwanted side effects. Inheritance is a unique

contribution of the OOP paradigm that distinguishes OOP from OBP and other

programming models.

Polymorphism is another feature supported by OOP languages. Polymorphism

means that one form may be used to execute different actions. It provides a mecha-

nism to handle different operations with the same name and hence provides a manner

to maintain a generic interface for reusability. Polymorphism reduces code modifica-

tion during system extending. Without this property, the reusability is also limited.

Polymorphism is implemented through either early (static) binding or late (dy-

namic) binding mechanisms. In C-F+, for example, polymorphism is achieved through

4

overloading functions and operators, and inheriting from virtual functions. Function

and operator overloading is supported by early binding, while virtual functions are

supported by late binding. The main advantage to early binding is efficiency and

the disadvantage is lack of flexibility. For the late binding, however, the advantage

and the disadvantage are just the other way round.

1.2 Concurrency

Concurrency refers to the potentially parallel execution of parts of a computation

[Agh90]. Logically, the object model and concurrency are nicely in mesh because of

the attributes of the object model. However, object-orientation and concurrency are

different concepts. Object-orientation emphasizes data abstraction, encapsulation,

inheritance and polymorphism, whereas concurrency stresses on process abstraction

and cooperation, i.e., communication and synchronization. Hence a concurrent exe-

cutable object model should unify these two aspects. That is, each executable object

in a concurrent system should represent both a data abstraction and a process ab-

straction (threads of control) [Boo91]. Such objects are called active objects. To

distinguish active objects from the objects that lack control threads such as that

in sequential systems, we call the latter passive objects. An active object model is

more complex than a passive object model due to the fact that the former involves

scheduling, communication and synchronization mechanisms. The inter-process and

intra-process interactions result in a more complicated interface and internal struc-

ture of active objects than that of passive objects.

A process is a formal representation of a program in execution [LM89]. In a

5

Figure 1.1; Classification of processes

COOP system, two kinds of concurrency should be considered. One is inter-process

concurrency which refers to the concurrency between active objects. The other is

intra-process (or internal) concurrency, which allows concurrency occurring within

an active object. Active objects are concurrently executable. Such objects are rep-

resented by processes in execution. When intra-process concurrency is introduced,

there will be more than one concurrent executable elements within a process. The

smallest executable element within a process (or active object) is called a thread.

Processes can be classified according to the properties of intra-process concur-

rency as shown in Figure l.l[Weg89, Weg90]. A process that has only a single thread

of control is called a sequential process. A process which has more than one threads

of control but has at most one active thread of control at a time is a quasi-concurrent

process. A concurrent process with multiple threads of control active simultaneously

is called a concurrent process.

A sequential process has a single thread of control. It may be suspended while

waiting for receiving a message from other processes. An incoming message must

6

wait until the currently executing process is ready to accept it. As long as the

message is accepted, the invoking operation must run to completion. An example of

this class is the task in Ada where a rendezvous occurs when a called task accepts a

message from a calling task.

A quasi-concurrent process has at most one active thread at anytime. The pro-

cess, however, may have suspended threads in one or more waiting queues. An

executing thread is suspended while waiting for a condition to become true. When

the condition is satisfied, the suspended thread is resumed in execution. The differ-

ence between a sequential process and a quasi-concurrent process is that the latter

has condition queues of suspended threads, and entry queues of threads. An in-

coming message invokes an active thread only if the current thread terminates or is

suspended. To allow at most one thread be active is in fact to ensure mutual exclu-

sion of accessing local data, while the ability to suspend threads internally provides

more flexibility. However, suspending threads in the middle of transactions violates

mutual exclusion in some extent. Transactions should not be interrupted during ex-

ecution since they may temporarily be associated with a collection of resources. The

monitor-like object-based languages such as ABCL/1 [BR89]and Orient84 [YT87]

are based on quasi-concurrency.

A concurrent process has multiple active threads. A thread can be freely created

in the process as soon as a incoming message invokes an operation. However, this

gives the rise to the problem of how to ensure mutually exclusive access to the shared

data. A thread is suspended if it attempts to access the shared data in critical

regions until the access can be accomplished safely. Concurrent processes provide a

mechanism to implement fine-grained concurrency with the increase in complexity

of control mechanism.

In sequential and quasi-concurrent processes, the units of modularity and con-

currency are the same. These result in a simple design and implementation of the

language. By contrast, concurrent processes allow units of modularity to contain

multiple units of concurrency. This, on one hand, makes it more natural to model

some applications. On the other hand, it makes the language design and implemen-

tation more complex because it requires distinct synchronization and communication

mechanisms for inter- and intra-process concurrency at both the language level and

system level.

COOP models can also be classified as either active object models or passive

object models. The active object model unifies object-orientation and process ab-

straction. An active object is an object bound to a process with one or more threads

of control. The active objects are run-time entities in concurrent systems. They are

activated upon the creation of processes bound to them. They are disabled when

the processes are destroyed. An active object has a public interface composed of op-

erations to be accessed by other active objects. The invocation of an operation can

not be performed by a normal function call as in sequential systems. It is performed

through message passing: a caller sends a request, a callee receives the request, ex-

ecutes the operation on behalf of the caller and finally sends back the results. In

the active object model, the control threads of an object can be either active or

suspended depending on messages received by the object or some other conditions.

In this model, the incoming messages may be handled one by one or concurrently

depending upon the mechanism of thread control and types of the process. In the case

that incoming messages are handled concurrently, two variations of the model are

8

developed: static variation and dynamic variation. In the static variation, a fixed

number of threads are created for each object upon its activation. An incoming

request is randomly assigned to an idle thread to perform the request. If all threads

are busy when a request message comes, the message is placed in a queue for service

at a later time. This scheme limits the degree of intra-process concurrency. In

the dynamic variation, however, a thread is dynamically created for an incoming

request. The thread is destroyed when the request is serviced. This scheme provides

a flexible degree of concurrency as needed within an object, but has additional cost for

dynamically creating and destroying threads [CC91]. Many languages, for example,

ABCL, POOL, Concurrent Smalltalk and BETA, are based on the active object

model.

Passive object model is another object model used by some concurrent languages,

such as Clouds [Das86] and Emerald [BHJL86, CC91]. By contrast to the active

object model, an object in the passive object model is not bound to a specific process.

The objects and processes are independent entities. An object is passive in the sense

that the object can be visited by processes but can not initiate communications to

others. Invocation of an operation in an object by a process is performed by normal

procedure call. A process may execute within several objects to perform various

operations. When this model is applied to a physical distributed system, a message

passing mechanism must be used to communicate between machines, and a worker

process must be created at the called machine to execute the requested operation on

behalf of the calling process.

9

1.3 Communication and Synchronization

In concurrent and distributed computation, one of the major issues is communication

and synchronization among the active objects or processes. Communication refers

to the exchange of information between two processes [LM89]. Synchronization is

a mechanism to establish some form of agreement among a set of processes [Li89].

In other words, synchronization mechanism ensures events in a computing system

occurring in a proper order and with suitable temporal relationship [LM89]. Synchro-

nization and communication are closely related and intertangled with one another.

On one hand, synchronization mechanism is needed for handling communication

and for ensuring mutually exclusive accessing shared resources among processes. On

the other hand, synchronization is often achieved through communication. There are

two basic patterns for accomplishing a communication: shared variables and message

passing. For example, semaphores, conditional critical regions and monitors are three

models which provide synchronization mechanisms via communication with shared

variables. Client/sever model is based on asynchronous message passing, and remote

procedure call(RPC)[Han78] combines concepts of procedure call with synchronous

message passing. In this section, we first briefly review the basic communication

patterns and process coordinations. More detailed discussion of communication and

synchronization models will be addressed in Chapter 2.

In the shared variable pattern, shared variables are used as a means of commu-

nication. To exchange information, one process writes to a shared variable, another

process simply reads from it. The interacting processes and shared variables are

usually in the same address space, so the shared variables can be directly accessed

10

by each process. The advantage of this pattern is that it provides the fastest and

simplest communication for the processes in the same address space. The disadvan-

tage of the pattern is that it raises some other problems such as mutual exclusion of

the shared variables and synchronization of accessing the shared variables between

the writing process and the reading process.

With the pattern of message passing, processes share channels, which are abstrac-

tion of physical communication networks. These channels provide communication

paths between processes and are accessed by two primitives: send and receive. To

exchange information, one process explicitly sends a message while another process

explicitly receives it. Channels can be global to processes or directly associated with

processes, and they can provide one-way or two-way information flows. According

to different schemes, message passing is classified into synchronous message passing

and asynchronous message passing.

Synchronous message passing provides a two-way communication mechanism. It

tightly couples the communication and synchronization in the sense that sending

and receiving processes must be both in ready state to perform an exchange of

information. A process sending a message is blocked until the other process is ready

to receive the message. Since each communication synchronizes the sending and the

receiving processes, the sending process is free to continue execution only after the

communication is accomplished. With synchronous message passing, there is no need

to buffer a message in a channel since the message is received as long as it is sent.

Hence a channel serves only as a communication path.

By contrast, asynchronous message passing provides a one-way communication

mechanism. With asynchronous message passing, the send primitive does not block

11

the sending process. The sending process does not care if the receiving process is

ready to receive a message. It sends a message, and is free to continue its execution.

The message sent is appended to the end of the channel’s queue. The sending

and the receiving processes execute independently, and a message might be received

arbitrarily long after it has been sent. The channels serve both as communication

paths and as message buffers that should have unbounded capability.

There is a special case with asynchronous communication: all processes share a

single communication channel. This is so called generative communication [And91b,

Gel85]. The shared channel is called tuple space. With generative communication,

associative naming is used to distinguish different kinds of messages stored in tuple

space.

The message passing provides a flexible communication and synchronization scheme

and is suitable for physically distributed processes which do not share the same mem-

ory space. However, this pattern is less efficient than the shared variables in general.

Basically, there are two types of interactions (relationships) between concurrently

executing processes that communicate via message passing. One is principal-and-

subordinate type such as client/server model. The other is reciprocity type, e.g.^

peers model. In the client/server model, only clients can initiate communication.

Clients make requests to servers, and servers provide services to clients. In the peers

model, however, both interacting processes can make requests to the partner and

both processes can provide services. A problem that axises due to the interaction

between processes and due to multiple processes sharing resources is interference

among processes. Synchronization plays a role of avoiding interference between con-

currently executable processes, either by mutual exclusion or conditional synchro-

12

nization. Mutual exclusion groups statements into atomic actions and thus hiding

intermediate states to prevent undesired interleaving. Conditional synchronization

delays processes in execution until required conditions hold.

1.4 Thesis Outline

This thesis presents a proposal for introducing concurrency to a sequential object-

oriented programming language - C++. We chose C++ as the base language because

it is more popular than many other OOP languages and it allows the reusability of

existing C code as well as the C programming environment. Our proposal, named

CC++, exploits coarse-grain concurrency within the sequential object-oriented pro-

gramming paradigm. Important objectives of the language design are simple syntax,

clear semantics, strong expressive power and high portability.

Chapter two gives the survey of closely related work. A brief survey of COOP

languages can be found in [Nel91j. Some of these languages are commercial products,

and some are research proposals. Broadly speaking, COOP language research falls

into two categories; extensions to sequential OOP languages and designing new

COOP languages. Research proposals in the former category inherit most features

from more conventional OOP languages, and proposals in the latter category are

either predicated on specialized parallel architectures or new programming model.

The emphasis of our survey is placed on different communication/synchronization

models and COOP languages extended from C++.

Chapter three presents our proposal - CC++. CC++ is an extension to C++.

It distinguishes two categories of objects: process objects and class objects. Each

13

process object has its own sequential control thread and an optional public interface

accessible by other process objects. A set of process objects is synchronized and

coordinated by a Remote Function Call(RFC) mechanism. Indeterministic RFC’s

are selected or sequenced by guarded function declarations.

To illustrate usage of CC++, several typical concurrent applications are presented

in chapter four. We show how CC++ is used in different problem solving patterns,

such as pipeline, divide-and-conquer and inter-process cooperation.

The implementation issues of CC+^- are discussed in chapter five. CC++ is

designed to be a practical, usable, concurrent object-oriented programming language.

An experimental compiler of CC-l—f has been developed. The run-time system of

CC++ consists of a process scheduler based on context-switch technique and an IPC

(Inter-Process Communication) kernel.

The last chapter gives conclusions and describes future work. Several questions,

such as inheritance among active and passive objects and granularity of concurrency,

remain to be answered. In addition, a detailed experimental study of different con-

current programs in CC-I-+ is required.

14

Chapter 2

SURVEY OF RELATED WORK

Concurrent object-oriented programming(COOP) language design is still fairly new

research area. Although much work has been done in this field, there are very few

mature languages or systems available [BST89, Nel91]. Efforts in COOP language

design have being made in two directions. One direction is to extend existing OOP

languages to COOP languages. The other is to develop new COOP languages. In this

chapter, we first briefly describe two approaches in design of COOP languages, then

compare different communication and synchronization models. Finally, we focus on

several COOP languages extended from C++.

2.1 Approaches in Designing COOP Languages

One way of designing a COOP language is to extend an existing OOP language.

The languages and research proposals in this category inherit most characteristics

from conventional OOP languages. The purpose of extending existing languages is to

maximize the reusability of existing languages and system facilities. One advantage of

doing so is less expensive in design and implementation of COOP languages. Another

advantage is that it is easier for people to accept or adopt a familiar language. The

third advantage is that it helps reuse of existing application software. The difficulty

one might have is to make the derived languages consistent with the base languages

in aspects of syntax and semantics. The expressive power is also a main issue of

15

concern.

Several sequential OOP or OBP languages, such as Smalltalk, Ada, Lisp and

C++, are often chosen as base languages. For example, CST [DC89], DOST [NYT'*‘89]

and Actalk [Bri89] are based on Smalltalk-80. DRAGOON [DMCB''‘89] is an exten-

sion to Ada. Acore [Man89] and Lamina [DS89] are Lisp based Languages. ACT++

[KL89a], Concurrent C++ [GR88], /iC++ [BDSY92], Sim++ and SimD [Bae91] are

languages developed on C++.

These languages essentially use the concepts of process to expose concurrency.

Either synchronous or asynchronous message passing mechanism is used with the

combination of some sort of sequencing mechanism to coordinate and synchronize

concurrently executing objects. For instance, CST and DCST extend the message

passing facility of Smalltalk-80 and combine it with guarded communication mech-

anism. Actalk, Acore and ACT++ combine their base languages with the actor

model. Sim++ and SimD, however, incorporate C++ with Time Warp paradigm.

These languages are often implemented by introducing a few new keywords and

structures, or by using build-in libraries.

On the other hand, designing new COOP languages is more expensive than ex-

tending existing OOP languages. It is, however, possible to design a new language

that smashes the trammels of old languages. In addition, some special applications

may need languages with special properties that can not be incorporated into the

the existing languages. Often, the languages of this group are either designed for

special parallel architectures or based on some kinds of unconventional program-

ming models. For instance, POOL [AdH90] is a COOP language designed to run

on a specialized parallel architecture called the decentralized object-oriented ma-

16

chine(DOOM). A’UM [YC89] is based on stream-based model, while CLIX [HC87]

and 0-CPU [Mel89] are on logic-based model.

2.2 Communication and Synchronization Models

In this section, we discuss several communication and synchronization models, such

as client/server, peers, monitors, RPC, rendezvous and the actor model, which are

suitable for or extensible to concurrent object-oriented computing.

Client/server model [And91a] is based on asynchronous message passing. In this

model, there are two kinds of processes, namely client processes and server processes.

A client is a triggering process while a server is a reactive process. The relationship

between a client and a server is the principal and the subordinate. A chent initiates

communication by sending a message to a channel, and a server acquires the message

by receiving from the same channel. When a client sends a message to a server, the

server might be able to respond to the request immediately if it is currently available,

or it might save the message in a queue for later processing if it is now busy with

some other job. A client process continues execution and terminates after execution

of its body. A server is usually a non-terminating process and can provide services

to many clients. It waits for requests, then reacts on them. Figure 2.1 shows the

interaction between a client and a server.

The receive primitive plays two important roles. First, it specifies actions of

receiving a message. A process has to explicitly apply receive to a certain channel to

accomplishing communication. Secondly, it provides a synchronization mechanism.

A process is blocked at the point of executing a receive statement if there is no

17

Client Server

send receive

Figure 2.1: Interaction between a client and a server

message available. Thus, a client can simulate a synchronous communication using

a send statement followed by a receive statement.

A peer [And91a] or an agent [Boo91] is an active object that can both operate

on other active objects and be operated on by other active objects. A peer is a

combination of client and server. As a chent, a peer can request services from other

peers. As a server, a peer can accept request from and provide service to other

peers. Synchronization between two peer processes can be achieved by the proper

arrangement of send and receive primitives. The peers model provides a way of

conversation between processes. Figure 2.2 shows a possible conversation between

two peers.

Indeterminism is an issue related to conditional synchronization. As long as a

process provides more than one service, i.e., the process has more than one operation

that can be requested by other processes, indeterministic selection of execution of

an operation may occur. The reason is that the interactions among processes are

not always known in advance, but rely on some run-time conditions. When faced

with several requests, the process must decide which one should be served. Two

commonly accepted strategies are used in handling this problem. One is based on

18

Peer A Peer B

send

send

receive

receive

receive

send

1

I

I

Figure 2.2: Conversations between two peers

guarded commands [Dij75], such as guarded communication [And91a] and select

statement [BST89, Weg90]. Another is based on the actor model [Hew77].

With the guarded communication or select statement, statements are guarded by

a Boolean expression followed by a communication statement. The general form of

a guarded communication is:

B-C ^ S

where B is an optional Boolean expression, C is a communication statement, and S

stands for a statement list. B and C constitute a guard. Omitting B implies a true

Boolean value. When B is evaluated true and C is performed, the guard succeeds and

then S is executed. If the evaluation of B is false, the guard fails and the statements

can not be executed. If B has true value but C can not be executed without causing

delay, the guard is blocked. The statement list S can not be executed until the

guard succeeds later. The Boolean expression B must be side-effect free. Otherwise

inconsistent process state may be caused due to multiple evaluation of the Boolean

expression.

19

By contrast, the actor model uses the behavior changing mechanism in solving

the problem of indeterminism. A behavior of an actor decides what message the actor

can receive. An actor has only one behavior at a time, and can change its behavior

dynamically at run time. An example will be discussed later in this section.

The concept of monitor [Han73, Hoa74, And91b, And91a] was developed for man-

aging mutually exclusive access to shared concurrently accessible resources and for

synchronizing processes. To ensure mutual exclusion, a monitor allows at most one

process at a time to execute within the monitor. This guarantees that no processes

can interfere with each other for a shared resource.

In monitor model, condition variables are used for synchronizing processes. A

condition variable delays a process that can not safely continue executing until the

monitor’s state satisfies some Boolean condition. Two statements, wait and signal^

are used in a monitor for this purpose. The execution of wait causes the executing

process to be suspended at the rear of a delay queue related to some condition. The

execution of statement signal then awakens the process at the front of the delay

queue related to the condition.

Processes access to monitors by procedure calls. A calling process transfers con-

trol to the called monitor and gets the control back when its request has been served.

In case of some condition not been satisfied, the calling process is suspended, and the

monitor can be accessed by another process. Thus communication and synchroniza-

tion among processes are realized in mutually exclusive manner. Since a monitor

serves as a shared resource, it is suitable for the concurrent systems that share

memory space or have memory space overlapped. Figure 2.3 shows the interaction

between processes and a monitor.

20

Process A Process B

Figure 2.3: Interaction between processes and a monitor

A monitor has the functionality similar to a server. They both provide services

to some kinds of processes, and provide communication and synchronization mecha-

nisms between those processes. However, they are different in essence. First, a server

is an active object, whereas a monitor is a passive object. An active object has one

or more control threads, but a passive object does not. Secondly, a client operates

on a sever by means of message passing, but a process makes procedure calls to

access a monitor. Third, a server can not suspend a client whereas a monitor can.

When a server starts servicing some request, it has to continuously execute to the

end of the service. Incoming messages are buffered in the communication channels

if the server is busy. The server responds to the next message only after finishing

the current service. A monitor, however, can suspend a process at the middle of an

operation by appending the process in a waiting queue. The monitor is then ready to

be accessed by another process. The suspended process is awakened later when some

Boolean condition is satisfied. This provides flexibility to handle some operations

21

which depend on some conditions in execution.

As mentioned in client/server model, the primitives send and receive are powerful

enough to express synchronous message passing. To simulate a synchronous com-

munication or the two-way information flow between a client and a server, however,

both client and server must explicitly execute two message passing statements, he.,

the client executes a send followed by a receive and the server executes a receive

followed by a send.

Remote procedure call(RPC) is a higher level message passing construct [And83].

It combines aspects of procedure call and synchronous message passing, and thus can

be used to express synchronous message passing directly. In RPC, a caller executes a

ca//statement to initiate a synchronous message passing. The call could be translated

into a send immediately followed by a receive. Thus after the caller sends the values

of arguments to an appropriate callee, the caller process delays until the service

has been performed and the results have been returned(if any). The callee is a

module declared as a set of procedures. This process receives messages (values of

parameters), executes the procedure on behalf of the caller, and sends back to caller

the results or acknowledgements. Figure 2.4 shows the diagram of the control flow

of a RPC between a client and a server.

With RPC, the synchronization between a calling process and a called process is

guaranteed by the RPC mechanism. However, we still need some way to synchro-

nize within a called process. When a process receives a remote call, it must decide

whether or not the call can be executed right away. The complexity of the decision

mechanism depends on the type of the called process. If a called process is a sequen-

tial or a quasi-concurrent process, he., at most one procedure at a time is active,

22

Process

Figure 2.4: An RPC between a client and a server

no concurrent execution of procedures occurs. In this case, shared variables in a

process are automatically protected against concurrent access. However, conditional

synchronization mechanism is still needed for the problem of indeterminism. The

common way is using the behavior change mechanism or guarded communication as

discussed earlier. If the called process is a concurrent process, be., more than one

procedure are allowed to be active simultaneously, concurrent execution of multiple

threads in a process happens. In this case, both mutual exclusion and conditional

synchronization mechanism are needed for the intra-process concurrency. The im-

plementation of the latter is more complex than the former. A shortcoming of RPC

paradigm is that a process can not explicitly specify acceptance of a message. The

acceptance of a message is implicitly accomplished. This makes the RPC mechanism

unable to simulate conversations between processes.

Rendezvous is another high-level construct that provides a mechanism for ex-

pressing synchronous message passing. It combines the aspects of RPC with that

of the peers model. With rendezvous, a calling process still uses a call statement

to perform a remote procedure call. The call has the same properties as that in

23

Figure 2.5: Control transfer between processes in rendezvous

RPC. But the called process must specify clearly what message to be accepted at

the point of acceptance by using in or accept statement. The m(or accept) has a spe-

cial property. It delays the called process until there is at least one message asking

for the service provided by the called process at the suspended point. A rendezvous

occurs only when the caller is executing a call statement and the caUee is execut-

ing an appropriate in statement that accepts the caller’s request. Thus rendezvous

provides a mechanism to perform synchronization communication at the point cho-

sen by called processes. Like in RPC, guarded communication can be employed in

rendezvous for the problem of indeterminism. Figure 2.5 shows how two processes

make a rendezvous.

RPC and rendezvous mechanisms are high-level constructs for expressing syn-

chronous message passing. However, with RPC, the interacting processes are client

and server processes, whereas the processes involving in rendezvous are peers. With

RPC, a called process does not explicitly specify acceptance of requests, and con-

current execution of procedures in a process can be implemented by either creating

new threads or assigning an idle thread to handle the request as soon as requests

have been received and some conditions are satisfied. By contrast, a called process

24

in rendezvous has an execution body which specifies the acceptance of messages.

The requests are serviced one at a time rather than concurrently. Hence the called

process is a sequential process. The advantage of rendezvous is that it provides

an inter-process communication mechanism that RPC does not support. But ren-

dezvous does not support concurrency within a process.

The actor model was introduced into concurrent computing as a way to view

control structures in artificial intelligence applications [Hew77]. It was later extended

by many others [HA79, Agh86, Agh90].

Actors are self-contained active objects. They interact with one another through

asynchronous message passing. In this model, behaviors of objects are viewed as

functions of incoming communications. This model has three simple but powerful

primitives: create, send and become. The first primitive create spawns new actors

according to behavior description and parameters. It provides a mechanism to create

resources dynamically in concurrent systems. The second primitive send carries out

asynchronous communication among actors. The last primitive become, which is the

most novel concept of the actor model, specifies replacement of behaviors. That is,

actors can replace their old behaviors by new behaviors. Figure 2.6 conceptually

presents the behaviors of actors and their interactions.

In the actor model, communications are accomplished through mail boxes. Each

actor has a unique mail box whose address serves as its identification. The address of

the mail box is determined at the time an actor is created. The incoming messages

to an actor are buffered in a queue of its mail box. They are read one at a time in

the order of first in first out(FIFO). An actor can send a message to another actor

only if the sender knows the address of the receiver.

25

Actor A Mail Queue

become

send _^ehavior*^—*^ehavior^ ► ^behavioi^

create

Actor B

Mail Queue

become

^behavior^^~*~^ behavior^ ^~(behavior ^

Figure 2.6: Actors, their behaviors and interactions

26

The distinguishing feature of the actor model is the become operation, which is

used to solve the problem of indeterminism. In the actor model, the state change is

specified using behavior replacement. The behaviors of an actor determine how the

actor reacts to requests from other actors. The become operation explicitly speci-

fies the transformation of the behaviors from one to another. Consider a bounded

buffer as an example. A bounded-buffer actor may perform two actions, putting an

item into a buffer or getting an item from the buffer. It may accept two kinds of

messages:put and get. It may have three behaviors: puLbehavior, get.behavior and

put^or^getJyehavior. In the put-behavior, the actor only receives put request. If there

is no such kind of message in its mail box, the actor simply waits until one comes.

In the get-behavior, only get message is received. In the put-or_get-behavior, both

put and get messages can be received. Hence, if the buffer is empty, the actor must

be in put-behavior, and if the buffer is full, it must be in get-behavior. Otherwise,

the actor must be in put-or-get-behavior. In this behavior, the requests are serviced

indeterministically upon the order of FIFO. The primitive become then acts like a

switch that transforms the actor’s behaviors from one to another.

2.3 COOP Languages Based on C++

In this section, we discuss some COOP languages that are closely related to our

design. They are all extensions of C-1-+ which is in turn extended from C. C-)-+ is

more popular than many other OOP languages because of its reusability of existing

C code, its programming environment and C’s popularity. The languages that we

are going to discuss in this section are Concurrent C-f-|-, /iC-|--|- and ACT-|--t-. The

27

comparison of major properties of these languages against our proposal can be found

in the final chapter.

Concurrent C++ [GR88] was developed by AT&T Bell Laboratories in 1988.

The objective of this language was to integrate Concurrent C [GR86] and C++ to

produce concurrent programs running on non-shared memory multicomputers. The

language is a superset of Concurrent C and C++. The former provides concurrent

programming facilities into C, while latter introduces object-oriented programming

paradigm into C.

In Concurrent C, the keyword process is used to expose concurrent executable

entities. A process is an instance of a process definition. A process definition consists

of a process type and a process body. The process type is the specification of the

public interface of the process. The process body specifies the implementation of

the process. Each process is a sequential process that has a single control thread. A

process must be explicitly(dynamically) created at run-time.

The communication model used in Concurrent C is synchronous and asynchronous

message passing mechanism. Synchronization is achieved through rendezvous. A ren-

dezvous is accomplished through a synchronous transaction call declared in a process

specification. A synchronous transaction call is performed by two steps. First, a call-

ing process initiates a transaction call. Secondly, a called process accepts the call

through guarded accept statement and then executes the transaction and finally re-

turns results, if any. The guarded accept statement and guarded select statement are

used to decide indeterministically the transaction to be executed at run-time. A by

clause is used to order the execution of outstanding transactions of the same kind.

The Concurrent C++ merges Concurrent C and C++. It inherits all the con-

28

current programming facilities from Concurrent C. Two kinds of user defined data

types are distinguished: class and process. Classes instantiate passive objects, while

processes instantiate active object.

The structure of a process is different from that of a class. A process structure

has the following properties.

1. A process type(specification) only provides a public interface. It does not

contain a data structure. All members are in public scope and are so called

transactions similar to public functions in a class.

2. A process does not have constructors or destructors. It has a body which

specifies the execution of the process, and contains the definitions of aU the

transactions.

3. Transactions are indeterministically chosen for execution through guarded se-

lect statements and guarded accept statements.

The above properties have caused some drawbacks. First, the specification with-

out data structure violates the encapsulation of an ADT. This reduces the modularity

of a data type. An implementer of a process has to decide the data to be manipu-

lated by transactions. Secondly, a process does not have the inheritance hierarchy

due to its body structure. In addition, transaction overloading is not allowed in a

process because this requires that parameter types be specified in accept statements.

These problems, in some extent, limited the reusability and polymorphism of an

OOP language.

//C-f+[BDSY92] is a COOP language developed by Department of Computer

Science at University of Waterloo. The language is also an extension to C-f+, and

29

is designed to run on uniprocessor or multiprocessor shared memory systems. In

synchronous communication mechanism is supported via routine calls. Data

is transmitted by argument passing, and results are returned as values of routine

calls.

(J.C++ provides five user defined data types, he., class, coroutine, monitor,

coroutine-monitor and task. The class is the original construct in C++. The rest are

new types extended from the class construct. Their instances are called class-object,

coroutine, monitor, coroutine-monitor and task respectively. A coroutine is a passive

object with execution-state. Its execution can be suspended and resumed explicitly.

A monitor is also a passive object. It is a class-object with mutual exclusion implic-

itly implemented within the object. In a monitor, guarded statements can be used

to determine the member to be executed next. A coroutine-monitor is a coroutine

with mutual exclusion. It combines the properties of a coroutine and a monitor.

Since monitors and coroutine-monitors are embedded mutual exclusive mechanism,

they have the capability to protect simultaneous access to their data. In //C++,

tasks are the only active objects with their own threads of control and execution

states. All kinds of objects in /iC++ can be created statically or dynamically as

in C++. Their syntax and semantics are similar to that of C++. For example, an

^C++ block cannot terminate until all statically declared tasks within it terminate.

A dynamically created task in the block does not have to terminate before the block

terminates. Such a task may be destroyed by delete.

In /xC++, each user defined data type can inherit from the same type. However,

inheritance among different types and multiple inheritance among the same types are

not supported. The new types allow function overloading, but the overloaded func-

30

tions are not distinguishable in the accept statements. Hence the accept statements

accept any calls with the same name [BDSY92],

ACT++ [KL89a] is another COOP language based on C++. This approach

differs from Concurrent C++ and ^C++ by combining C++ with the actor model

[Agh86], and being designed for distributed real-time applications.

In ACT++, there are two kinds of objects: actors(active objects) and passive-

objects{iLOxmal class-objects). Actors are concurrently executable entities. They

are dynamically created at run-time. The communication between actors is accom-

plished through asynchronous message passing through mail boxes. Two types of

messages are distinguished. They are request messages and reply messages. Each

actor contains a unique Mbox variable and may have many Cbox variables. These

variables serve as identification of the actor. The Mbox variable is used to send

request messages, while the Cbox variables are used to send reply messages.

The most distinguishable property of the language is that of indeterminism mech-

anism adopted from the actor model. In an actor, its behaviors determine how it

reacts to requests from other actors. Different behaviors respond to different request

messages. A become primitive is then used to specify the behavior replacement of

an actor. Specifying behavior replacement by become operation indicates that the

current behavior has finished modifying the state of the actor, and the new behavior

can start to process the next message. This results in the potential for concurrency

inside an actor. One side effect of the become operation is that it sometimes forces

the splitting of a coherent object definition. One example of this case is given in

[KL89a].

ACT++ supports both inter-process and intra-process concurrency. The intra-

31

process concurrency is at the behavior-level rather than the instruction-level. The

behavior-level concurrency refers to the concurrency achieved through the become

operation. Inheritance of actor classes is also supported in ACT-f-f. The conflict

of concurrency and inheritance is solved using the model of object manager and

behavior abstraction [KL89b]. The language, however, does not support method

overloading in actor classes.

32

Chapter 3

CC++: A COOP LANGUAGE

CC++ is an extension to C++[LH93]. It exploits coarse-grain concurrency within

the sequential object-oriented programming paradigm and distinguishes two cate-

gories of objects: class objects and process objects. Class objects are passive objects

while process objects are active objects. A class object is an aggregation of data with

associated operations. Such objects retain the same syntactic forms and semantics as

in C-f-f-. On the other hand, a process object is a self-contained, coarse-grain concur-

rent entity with its own (implicit or explicit) control thread and an optional public

interface accessible by other process objects. A set of process objects is synchro-

nized and coordinated by a Remote Function Call(RFC) mechanism. Indetermin-

istic RFC’s are selected or sequenced by guarded function facilities. The proposed

language supports multiple inheritance among process types, and from class type

to process type. In addition, it supports function overloading and virtual functions

within both class and process types.

Syntactically, CC-f-1- is extended from by introducing five new keywords

and a form of guard declaration. The new keywords are process, self, unblock, create

and forward. Key word process is used to define processes. Self is an inherent pointer

to a process object like this pointer to a class object in C-f-h. Process objects must

be created dynamically by using create. Functions declared in a process can be

either blocked or unblocked, where blocked functions provide a tool for synchronous

communications among process objects while unblocked functions for asynchronous

33

communications. Guard and forward are used to solve indeterministic problems in

concurrent programming.

CC++ is designed to be a practical, usable, concurrent object-oriented program-

ming language. Important objectives of the language design are simple syntax, clear

semantics and strong expressive power.

3.1 Process Declaration, Creation and Execution

A class is a user-defined type for creating passive objects, be., class objects. A

process is also a user-defined type for creating active objects, be., process objects.

The syntax of a process declaration is almost the same as the class declaration in

C-f+ except for a few restrictions and extensions. First, keyword process is used

instead of class. For example:

process A {
int i;
double d;

protected:
int h();

public:
A(); _
int f(int);
void g(double);
~A();

};

Like in C+-I-, there are three access-specifiers in CC-|--|-: public., protected and

private. The public label declares a public interface (excluding constructors) of the

process. A process object can be accessed only through its public interface. The

34

protected and private labels have the same meanings as in C++. In the above

example, A() is a constructor, and ~A() is a destructor. Process member functions

f(), g() and A() constitute the public interface. The member function h() is a

protected function, and variables i and d are private members. From now on, we use

“process interface” to refer to the public part of a process declaration.

Inheritance is one of the major properties that characterize the object-orientedness.

CC++ retains the inheritance conventions of C++ and defines that a process can

be derived from one or more processes or classes but a class can not be derived from

any process. For example,

class B1 { ... };
process B2 { ... };
process D1 : public B1 { ... }; // legal
process D2 : public B2, public D2 { ... }; // legal
class D3 ; public B1 { ... }; // legal
class D4 : public B2 { ... }; // illegal

The visibility of a derived process are same as those of a class. For example, a

destructor inherited by a derived process is invisible to other process. When a process

is derived from a set of base classes, the semantic change from C++ inheritance is

that objects created through this newly derived type become active objects.

Polymorphism is implemented through overloaded function and virtual function

in C++. CC++ extends these language features to process type. For example,

the following process definition overloads function mult(...) by different argument

signatures.

process multiplier {

35

public:
int mult(int,int);
double mult(double, double);

}; '

The next example demonstrates the use of virtual function in process types:

process employee {
char *name[20];

public:
virtual unblock report();

};

process manager: employee {

public:
unblock report();

A process object is created dynamically by using the keyword create^ which is

similar to new in C++. CC++ does not allow the static creation of process objects.

For example,

A *pa;
pa = create A(); // legal: dynamic creation
A a(); // illegal: static creation

When a process object is created successfully, a pointer to the process object

is returned. However, a process pointer is not the common sense pointer of C++,

36

ie., it is no longer a memory address. A process object is referenced by the pointer

obtained in the process creation. A special process pointer, self, is associated with

each process object and is initialized upon the creation of the process object, just

like the special pointer this assigned to each class object.

A process object starts execution as soon as it is created. The execution thread

of a process object usually contains two phases: explicit control and implicit control.

Explicit control is defined by the constructor of a process. This phase constitutes the

explicit behaviors of a process object. It is executed only once immediately after the

creation of a process object. If a process is derived from one or more processes(or

classes), its execution will also invoke the constructors of base processes(or classes).

These constructors are executed in the order of derivation. A process can have

explicit control or implicit control or both. A process with no public interface has

only explicit control. In the absence of the constructor or at the end of constructor’s

execution, a process object falls into the implicit control phase. This phase performs

a control sequence iteratively: selecting and executing a function upon incoming

RFC’s. Figure 3.1 shows the control flow diagram of explicit and implicit control

phases.

The termination of a process object can be controlled by one of the following

three ways:

1. the process terminates upon the completion of its constructor if the process

does not have a public interface;

2. the process is destroyed when it is in implicit control phase and its destructor

is called explicitly;

37

No
Constructor ?

Terminate

"

Receiving RFC’s

Explicit
Control

Implicit
Control

Figure 3.1: Explicit and implicit control of a process object

38

3. the process terminates when the whole program terminates.

An exception is the root process object which assumes the main() function as its

constructor. The root process object is destroyed upon termination of the mainQ

function. A program in CC++ terminates if all its process objects have been de-

stroyed or if all the remaining process objects are in their implicit control phase and

no RFC’s are pending or in transmission.

3.2 Remote Function Call

Function call is a well-defined and well-understood mechanism for transfer control

and data between class objects. Although this mechanism can not be directly applied

to process objects, it is desired that the same mechanism be extended to synchro-

nize process objects and to transfer control and data across process objects. CC-f+

introduces Remote Function Call to achieve this goal. This mechanism borrows the

concept of Remote Procedure Call (RPC) [Han78] and extends it in two significant as-

pects: (1) An RFC (to a process member function) has either blocked (synchronous)

or unblocked (asynchronous) semantics depending on the type of the function de-

clared. (2) A variant of Dijkstra’s guard concept [Dij75] is applied to process member

functions for deciding the eligibility of incoming RFC’s indeterministically.

A principle in designing CC-1-+ is that the syntactic form of RFC should be as

close as possible to that of a local function call. A process issues an RFC to another

process by referencing the function through the callee’s pointer. For example:

process A {

39

public:

void f(int);
unblock g();

};

main(){
A *pa;

pa = create A(...);
pa-^f(lO);

pa-^g();
}

The semantics of an RFC depends on the type of the function being called. K

the function has a type of unblock, the corresponding RFC is explained by unblocked

RFC semantics. Otherwise, the RFC is explained by blocked RFC semantics. Any

function declared in a process interface without the unblock declaration is of blocked

type. In the above example, pa—>-f(10) is a blocked remote function call since a::f()

has the blocked type by default. On the other hand, pa-^g() is an unblocked RFC.

When a blocked RFC is issued, the function name, arguments and control are

transferred to the callee, and the caller is then suspended. The callee executes the

desired function on behalf of the caller. The results (if any) and control are passed

back to the caller after the function is completed. The caller is then resumed to

continue execution as if returning from a local function call. A blocked RFC provides

communication and synchronization as well, between participants in the RFC. Such

a mechanism has been adopted in many concurrent programming languages. It is

suitable for client and server applications. A theoretical flaw of the blocked RFC

40

paradigm is its lack of recursive semantics - any sequence of blocked RFC’s will result

in a deadlock if the sequence forms a circular call-chain.

On the other hand, an unblocked RFC only passes the function name and ar-

guments to the callee process and then the caller is free to continue its execution.

The caller’s behavior after an unblocked RFC must be independent of the RFC’s

execution, because there is no guarantee that the function has ever been executed.

An unblocked RFC can be used as a tool of communication as well as a tool of fork-

ing control between participants in the RFC. Unblocked RFC mechanism dilutes the

original RPC semantics, but increases the flexibility and the expressive power of the

language. It is most suited to process-interactive applications.

Inline functions and data members can not be defined via a process interface.

These restrictions arise from the common assumption in most concurrent/distributed

systems: no address space is shared among concurrent processes. The practical

semantics of accessing inline functions or public data members conflict with this

assumption. However, for user’s convenience, member functions of a process still can

be written like “inline”, although they lack the inline semantics.

Another restriction concerns the semantics of pointer-containing arguments of

process-interface functions. CC-f-)- provides a flat argument-level shared address

space emulation for user’s convenience. In other words, CC-t--f defines once-only

indirection semantics for pointer arguments but no semantic provision for pointers

contained in arguments or multiple-indirection pointer arguments.

The self pointer associated with each process object has two major purposes:

(1) to simulate an RFC to the process object itself; (2) to be passed to other pro-

cess objects to establish connections for communication and synchronization. For

41

example;

process B;

process A {

public:
unblock f();
void g(B *pb) {

self—

pb-^k();

}
};

process B {
A H^pa;

public:
void h() {

pa^g(self);

}
unblock k();

};

In the example, an object of process A initiates an RFC to itself by self—>f() when

its member function g(...) is called. A process object can only issue unblocked RFC’s

to itself, or dead lock occurs otherwise. On the other hand, the statement pa—>g(self)

in function h() passes the pointer to a process object of type B to the process object

pointed by pa so that a connection is established for further communication and

42

synchronization.

3.3 Mutual Exclusion and Indeterminism

In concurrent computation, process objects may share common resources and still

work in parallel and independently of each other. Thus, the mutual exclusion problem

is intrinsic in any concurrent system and must be solved to maintain the consistency

and integrity of these shared resources from arbitrary concurrent-access attempts.

CC++ includes a variant of Dijkstra’s guard concept for solving mutual exclusion

problems. Functions defined in a process (whether in the private part or the public

part) can be guarded. A guard is a side-effect free boolean expression enclosed in

parentheses. A function is guarded if its definition is followed by a colon and a guard.

A function without a guard is assumed to have a truth guard value. For example:

process buffer{
int buf[20];
int count, in, out;

public:
buffer();
void put(int i):(count < 20);
int get():(count);

};

Two member functions, put(...) and get(), are guarded to cope with the full/empty

situations. In response to an incoming RFC, the implicit control mechanism of a pro-

cess object executes the corresponding function only if its guard is evaluated to be

true. If several functions are eligible (having true guard values) to respond to a set

of pending RFC’s, then one is selected indeterministically. In the above example,

43

two functions are eligible to response their RFC’s when count is not zero and less

than 20.

Guards can not be used in either constructors of processes or member functions

of classes. Furthermore, unblock functions and guarded functions must be called

through RFC’s, because local function calls do not offer “forking control” or “con-

ditional call” semantics.

Sometimes a process object can not make any decision to response its caller

based upon the current state. The response has to be delayed until some condition

is fulfilled. CC++ provides another language feature to handle this situation. This

feature is called forward return: a blocked member function forwards the responsi-

bility of returning control and results (if any) to another same typed function by

using RFC. For example:

process A {
int i;

public:
void f():(i>5);

};

process B {
A +pa;

public:
void g() {

forward pa—^f();

}
};

44

The forward statement in g() shifts the return responsibility to the A::f() pointed

by pa. The function which issues a forward-return implicitly passes its original caller

to the new callee and is then free of duty. The responsibilities of resuming the original

caller and returning results are shifted to the new callee as if the new callee is called

by the original caller directly. Usually, the shifted function has a guard whose truth

value depends on some conditions. In our example, the guard expression is (i>5).

The function A::f() is executed when the condition (i>5) is true. The function issuing

“forward return” terminates immediately, and its control thread is switched back to

the implicit control phase to accept other RFC’s. Forward-return is a very important

facility in organizing synchronization among process objects.

A process object can also issue a forward-return to itself. This happens when a

blocked function has to delay the return to its caller and this delay is to be determined

by this process object based upon some other upcoming conditions. For example:

process A {

public:
int f():(...);
int g() {

forward self—4-f();

}
};

This programming style is especially useful in process-interactive applications

when a process object in the middle of execution wants to receive messages from other

partners before making any answer. After the forward-return, the called function g()

terminates and the implicit control mechanism of the process object is resumed to

45

accept other RFC’s to change its state. However, the whole transaction of forward-

return is transparent to the original caller.

The function which receives a forwarded RFC can further forward it to another

process object, but it can not forward back to the original caller in case of causing

a circular call-chain. An interesting feature is that a process object which receives a

forwarded RFC from some process object can still forward the call to itself. However,

this does not imply the recursive semantics. For example,

7^ define N 10

process fac {
int f;
int true; // guard
int computefact(int n){

if (n == 1) {
true — 1;
return f;

}
f = f ♦ n;
forward self^computefact(n-l);

}
public:

fac() { f = true = 1; }
int factorial(int n):(true){

true = 0;
forward self-^computefact(n);

}
};

main(){
fac *p = fac();
cout << N << ”! = ” << p-^factorial(N) << nl;

}

46

The purpose of this program is to show another usage of the forward mechanism.

In process fac, factorial(...) is a guarded member function. Its guard prevents con-

current access by many process objects. In other words, an RFC to factorial (...) is

an atomic action, no other RFC’s to this function can interfere with its execution.

Function computefact(...) is declared in the private section to protect from public

access. It carries out the factorial computation by simulating RFC’s to itself. How-

ever, it is not a recursive function, only the final result will be returned directly

to the original caller. Note the syntactical difference between return and forward.

return may be followed by a value, an expression, a local function call, a blocked

RFC or nothing, but forward must be followed by a single blocked RFC.

47

Chapter 4

APPLICATIONS

Expressive power is one of the most important issues in language design. The expres-

sive power defines the application domain of a language. CC++ has strong expressive

power which can be shown in writing various kinds of applications. In general, there

are three commonly used concurrent problem solving patterns [Agh90]. They are

pipeline, divide-and-conquer and process-coordination.

The pipeline pattern is applied to the problems in which all potential solutions

are known. The task of problem solving is to verify the given solutions. The way

of computing in this pattern is then to enumerate all the potential solutions and to

test them concurrently as they are enumerated. A typical example of this kind of

problem is the prime sieve: to find all prime numbers for a given natural number

series.

The second pattern is divide and conquer concurrency. The problems of this

category can be recursively divided into many subproblems. The result of the overall

problem is obtained by joining partial solutions of the subproblems. The solutions

of subproblems may be obtained by concurrent computing. There is no interaction

(communication) between these sub-computations. An example that can be solved

with this method is computing factorial.

The third pattern is cooperative problem-solving. In this pattern, problems are

solved by cooperation and interaction of concurrent processes. The interprocess

communication and synchronization are extremely important in this kind of problem-

48

sieve chain

rm
4 9 25 49
6 15 35
8 27
10

Figure 4.1: Pipeline diagram of prime sieve

solving. Indeterminism is one of the major problems to deal with. Many simulation

problems, in which physical objects are represented by logic objects, are applications

of this category.

In practical problem solving, however, many problems do not just fall into one

of the above categories. They may be entangled with two or even all patterns.

4.1 Prime Sieve

Prime sieve is a good example of showing pipeline concurrency. Prime sieve finds all

the prime numbers which are less than or equal to a given N in this problem. The

algorithm is to test all numbers through an ordered chain of sieves. The conceptual

diagram is shown in Figure 4.1.

In Figure 4.1, a chain is constituted by sieves with each containing a prime

number. Initially, there is only one sieve in the chain which contains an integer 2.

The successive integers from 3 to N are trying to go through the chain. Each number

is tested when it goes into a sieve. If the number is divided by the prime number

49

in the sieve, the number is discarded. Otherwise, it goes into another sieve. If a

number can go through the chain, be., no prime number in the chain can divide the

number, a new prime number is found. A new sieve is then added to the end of the

chain to contain the new prime number. Finally, all the prime numbers are found in

the chain. It is easy to use CC++ to write a process sieve to construct a sieve chain

for this problem.

process sieve {
int prime;
sieve =t=ps;

public:
sieve(int n) {

prime - n;
ps = NULL;

}
unblock test (int n) {

if ((n%prime) == 0);
else if (ps == NULL)

ps = create sieve(n);
else ps—)-test(n);

}

main ()

{
sieve *ps = create sieve (2);
for (int i=3; i<=N; i++) ps—>test(i);

}

After the first sieve process being created, the root process main{) feeds the sieve

chain with integers from 3 to N for testing. The initial sieve chain contains only one

sieve process. A new sieve object will be created and linked to the chain whenever

50

*

N N-1 N-2 N-3 ..,4 3 2 1

Figure 4.2: A tree structure of A^!

a new prime is found.

4.2 Computing Factorial

Divide and conquer method can be used to compute factorial concurrently. As is

known, A^! = iV + (A^ — 1) * (A^ — 2) * ... * 2 * 1. It can be expressed in a tree structure

in Figure 4.2.

From this binary tree structure, we can see that the factorial of N is finally divided

into a set of successive numbers. The multiplications of every two adjacent numbers

in the set constitute a new set. Repeat the computation on every new set until a set

containing only one element is obtained. This element is factorial of N. A process

type multiplier is defined as follows:

process multiplier {
multiplier *pm;
int i;

51

int partial;
public:

unblock join(int n) {
partial n;
// pass result to parent only when two children join
if (H—hi == 2){

if (pm != NULL) pm —>■ join(partial);
else cout << partial << nl;

}
}
multiplier (int low, int high, multiplier =(=p) {

pm ^ p;
partial = 1;
i = 0;
if (low >= high) pm —> join(low);
else {

int mid = (low + high) / 2;
create multiplier(low, mid, self);
create multiplier(mid+l, high, self);

}
}

};

main ()

{
create multiplier(l, 20, NULL);

}

The execution of the program consists of two steps. First, multiplier processes

are spawned to form a binary tree. Then these processes start to join the results in

a bottom-up manner. If a process is a leaf node, it stops creating new processes and

passes the result to its parent immediately in its constructor. On the other hand,

if a process is an intermediate node, then after its children being created, it goes

into the implicit control waiting for RPC’s. It will send the partial result back to its

52

parent only if it has received two RFC’s from its children.

4.3 Bounded Buffer

This is a classical concurrent problem which tries to synchronize a set of producers

and consumers to access a bounded buffer. A bounded buffer has limited slots to

hold elements. For the sake of simplicity, we suppose that the buffer may hold a

limited number of integers. Because of the fixed size of the integer buffer, a producer

will occasionally find the buffer full, which means that it must wait until a consumer

empties a buffer slot. Similarly, a consumer might wait for a producer to deposit

data to an empty buffer. Therefore, guarded functions are used to handle these two

situations.

process buffer {
int buf[10], count, in, out;

public:
buffer0 { count = in — out == 0; }
void put(int i) : (count < 10) {

buf[in] = i;
in = (in + 1) % 10;
count++;

}
int get(): (count > 0) {

int i = buf[out];
out = (out + 1) % 10;
count-;
return i;

}

process producer {
public:

53

producer(bufFer *pb) {

for (int i=l; i<=50; i++) pb—> put(i);

}

process consumer {
public:

consumer(buffer *pb) {

for (int i=l; i<=50; i++) cout << pb—> get();

} ’"
};

The interface of the buffer process consists of two guarded functions: put() and

get(). The variable count is initialized to zero by constructor. It is increased each

time an element is deposited, and is decreased when an element is taken away.

Therefore, comparisons of boundary conditions against count become the guards to

provent processes from putting an element to a full buffer or extracting an element

from an empty buffer. We define the type of function put(...) to be void. However,

we can also use unblock type for that function. The difference is that when void

type is used, a producer is suspended until its RFC to put(...) is responsed. Using

unblock type, however, the producer continues its execution without care of when its

RFC will be executed. A potential problem of using unblock type in this application

is that the system mail queue might overflow.

54

4.4 Readers and Writers

Readers and writers problem is a classical example of resources management in con-

current programming. Two types of process objects, readers and writers can access

a shared file. The file is allowed to be read by many readers simultaneously, but to

be written by a single writer at a time when no reader is reading. This example in-

geniously uses guarded function to solve the mutual exclusion of a shared file among

readers and writers.

process filemanager {
int w, r;
void delayO : (!r) { }

public:
filemanager() { w = r = 0; }
void start_read() : (!w) { r+-f; }
void start_write() : (!w) { w-(-+; forward self—> delay(); }
unblock stop_read() { r ; }
unblock stop_write() { w ; }

};

process reader {
public:

reader(filemanager *pf) {
pf—>start .read 0;
// reading ...

pf-^-stop_read();

}

process writer {
public:

55

writer(filemanager *pf) {
pf-^start_write();
// writing ...

pf—>stop_write();

}
};

The transaction of reading or writing must be enclosed in a pair of RFC’s. As long

as no writer requests writing, readers can always start reading (through start^readQ)

without delay. When a writer’s request is accepted (through starLwrite())^ any

other requests are blocked. The writer accepted by the function start-writeQ is not

allowed to write immediately. Instead, its request is forwarded to function delay()

which is guarded by the number of current readers. If no reader is reading, the

writer is granted permission to write, otherwise, the writer has to wait until all

readers terminate their reading transactions. As soon as the writer finishes writing, a

stop-write() is executed, and blocked readers and writers can start their competitions

for accessing the file. This solution maximizes concurrent access to a shared data

without starving either writers or readers.

4.5 Shortest Job Next Scheduler

Shortest job next (SJN) scheduler schedules multiple processes sharing a single re-

source in the order of shortest job first. This example shows how to sequencing RFC’s

from multiple process objects in the way that priority is granted to the process which

win hold the shared resource for the shortest time.

56

process SJN_scheduler {
Timequeue +tq;
int free, tm;
void delay (int time): (free &&: tm == time) {

free = 0;
return;

}
public:

SJN_scheduler() { free = 1; tm = 0; }
void request(int time) {

if (free && tm == 0){
free = 0;
return;

}
tq—^insert (time);
forward self—^ delay (time);

}
unblock release(){free = 1; tm = tq-^first();}

};

A process object requests the resource by an RFC to requestQ. A parameter

passed to this function is the time interval of how long the process will use the

resource. A process is granted to use the resource if no other process is holding or

waiting for the resource. Otherwise, its request is inserted into a queue in ascending

order of the time. A process issues an RFC to the unblocked function releaseQ to

return the resource. Thus a delayed job with shortest time is removed from the queue

and takes possession of the resource. In the process declaration, Timequeue is a class

which manipulates an integer queue. We suppose that its member function first ()

removes the first element from the queue and returns the stored value; however, if

the queue is empty, the returned value is 0.

57

4.6 Game of Life

This example demonstrates the simulation of the game of life [Gar70]. A grid of cells

is postulated consisting of living cells and vacant cells initially. The living state of a

cell may change in each generation, depending on the states of its eight neighboring

cells in the last generation. If a living cell has two or three neighbors alive, it will

be alive in the next generation, otherwise it will die. An empty cell will become a

living cell if it has exactly three neighbors alive in the last generation. The crucial

points of the problem are that (1) cells should be synchronized in every generation

transition, and (2) in each generation, every cell exchanges state information with

its neighbors. Our simulation program defines two process types: cell and display.

process display;

process cell {
cell *pc[8]; // pointers to 8 neighbors
display =i^pd;
int cx, cy; // cell position coordinates
int mail; // # of mails received within one generation
int state; // l:alive 2:dead 3:empty
int alive; /f of alive neighbors
int initialized;

public:
cell(int, int, int, display=t=);
unblock init(cell+, cell*, cell*, cell*, cell*, cell*, cell*, cell*);
unblock next (int): (initialized || (mail < 7));

};

process display {
int cells; // ^ of total cells
int count;
int done_draw;
void resume():(done-draw);

58

public:
display(int);
void draw(int, int, int):(!done_draw);

};

cell::cell(int s, int x, int y, display *p){
mail - alive — initialized = 0;
cx = x; cy = y; pd = p; state = s;

}

unblock cell::init(cell =t=l, cell *r, cell *u, cell +d,
cell *ul, cell *ur, cell *dl, cell *dr){

pc[0] = 1; pc[l] = r; pc[2] = u; pc[3] = d;
pc[4] = ul; pc[5] = ur; pc[6] = dl; pc[7] = dr;
pd—»draw(state, cx, xy);
for (int i = 0; i < 8; i++) pc[ij—^next(state);
initialized = 1;

}

unblock cell: :next(int s){
if (s == 1) alive ++;
if (++ mail 8) {

if ((state == 1) && (alive < 2 || alive > 3)) state
else if ((state == 3) && (alive == 3)) state = 1;
pd^draw(state, cx, cy);
mail = 0;
alive = 0;
for (int i = 0; i < 8; i++) pc[i]—♦•next(state);

}

}

display::display(int c){
cells = c;
ce — done-draw = 0;

}

59

void display::draw(int s, int x, int y){
if (s == 1) printxy(’=i=’, x, y);
else if (s == 2) printxy(’o’, x, y);
else printxy(’ x, y);
if (++count — cells) done_draw = 1;
return self—>resume();

}

void display::resume(){
if (count 0) done_draw = 0;

}

The main() (in absence) will create a display process object and a collection of

cell process objects and establish the connections among cells by using the unblocked

init(...) function. The behavior of display looks like a scheduler to synchronize cells

from generation to generation. Such synchronization is implemented by guarded

functions, draw(...) and resume(), plus the forward mechanism: cells start to decide

their next generation states only when their current generation states have been

drawn. On the other hand, cells use the unblocked function next(...) to exchange

their states. The guard of next() is true if a process object has been initialized or less

than 7 next() RFC’s have been accepted before initialization. The latter condition

is used to prevent the process object from entering the second generation without

finishing the initial one. The unblock type of nextQ makes it possible to achieve

maximum concurrency for cells in communication.

60

Chapter 5

IMPLEMENTATION ISSUES

An experimental CC++ has been developed on a network of SUN workstations. This

version consists of a preprocessor and a run-time system. The preprocessor translates

a CC-f-f program into a C-f + counterpart. The run-time system includes a process

scheduler based on context-switch technique and an Inter-Process Communication

(IPC) kernel. In this chapter, we first discuss the execution model of CC+-f, then

briefly describe the implementation essentials of the preprocessor and the run-time

system.

5.1 Execution Model of CC++

In CC-f-f, active objects are concurrently executable entities. An active object is an

instance of a user defined abstract data type, and is bounded to a sequential process.

Active objects are peers which can operate on and be operated by others.

Each active object contains a single control thread. It starts execution from its

constructor and then falls into implicit control phase to iteratively select and execute

member functions upon incoming RFC’s. The execution of a member function is an

atomic transaction. That is, as soon as an RFC is accepted the relevant function

is executed from the beginning to the end. The atomic transaction ensures mutual

exclusive access to the process state.

From programmer’s point of view, active objects are coordinated and synchro-

61

nized by RFC’s. RFC is a high level language feature, it is implemented through

message-based interprocess communication. The syntactic form to channel messages

in CC++ is by process pointers. As the matter of fact, a process pointer is a pointer

to an object of the following type:

class cc-pid {
int network-id;
int localJd;

public:
cc_pid();
cc_pid(const cc_pid &pid);
int operator == (const cc.pid &pid);
int operator != (const cc_pid &pid);
void operator — (const cc_pid &pid);

A message is a block of information formatted by the sending process and inter-

preted by the receiving process. Typical message format and the associated opera-

tions in our implementation are shown below. The same message format is used for

both issuing an RFC and returning results.

class cc_message{
cc_pid sender;
cc_pid receiver;
char function_name[MAX_NAME_SIZE];
int number-oLarguments;
char arguments [MAX_ARG_SIZE];
public:
cc_message(...);

cc_message();
// functions for accessing information };

62

Each message indicates a one-to-one communication connection. The IPC mech-

anism is used to transmit previously agreed on information between two parties. In

other words, the strong type semantics of CC-f + force the IPC mechanism to archive

type checked transmission of information.

Two layers of communication protocols are adopted in our execution model.

Here we assume that the low layer is supported by the underlying operating system

which provides a reliable, end-to-end mechanism for transmitting bytes of informa-

tion among nodes of a network. On the other hand, the IPC kernel constitutes the

high layer protocol which supports both synchronous and asynchronous communica-

tion. A set of IPC primitives (functions) and a mail queue are associated with each

active object. Messages transmitted to a process are buffered in its mail queue for

later reception. Figure 5.1 shows a synchronous communication transaction between

two active objects.

The major concern of our execution model is how to use C+-|- codes to implement

CC-f-f semantics. Certainly, one can not find one-to-one mapping of these two

language features, especially the features concerning concurrency. However, most

C-f-f implementations provide some kind of co-routine facility, which can be used to

simulate concurrent processes. We borrow the same idea to implement CC-f-f active

objects. Each process type in CC-f-f is converted to a class type derived from a base

class cc-process. The base class cc.process is a system-defined class that provides

primitive operations for RFC’s and swapping control among process objects. The

following gives a brief description of the base class.

enum cc_operation {
Create, Creating, New.born, Ready, B.call, Forward

63

Figure 5.1: A synchronous communication transaction

64

U-call, Block, Receive, Return, Terminate};

class cc_process; public co.routine {
cc-pid parent;
cc-pid child;
cc.operation operation;
ccunsg.queue *msg_q;

protected;
cc-pid cc_self;
ccTunct *f;
void ccjswapO;

public;
cc_process();
~cc_process();
char* cc_b.call(...);
void cc_u_call(...);
void cc.shift(...);
cc.pid* cc_create_pobj(...);
// other functions for accessing process states

};

5.2 Preprocessor

A preprocessor is designed to convert a CC++ program to a C++ counterpart.

The reason of using a preprocessor in our implementation is that we can adopt

the existing C++ compilers which not only make the implementation easier, but

also enhance the portability of the language. The preprocessor is written in Lex

[Les75] and Yacc [Joh75]. In this section, we describe how to translate typical CC++

features to C++ codes and how those C++ codes match the corresponding CC++

semantics. This discussion places emphases on the major translation procedures to

avoid implementation details.

65

As mentioned in the previous section, a user defined process type is converted

to a new class type derived from cc_process. However, as the process interface may

involve CC++ features, such as guards, unblock functions, inline declarations, etc.,

the following rules are taken by the preprocessor.

1. A separate guard function is defined for each interface function; if an interface

function has no guard in its original definition, then the corresponding guard

function simply returns true value.

2. Unblock declaration is removed and an UNBLOCK flag will be attached to the

function implementation.

3. The specification and the implementation of each inline function is separated

to eliminate the inline semantics.

For example, consider the following CC++ definition:

process A{
int guard;

public:

int f(...):(guard);
unblock g(...){ ...}

};

The preprocessor will generate the C++ counterpart below:

class A: public cc_process{
int guard;

public:

66

int
int _f_guard();
unblock g(...)j
int _g_guard();

};

int A::_f_guard(){ return guard; }

guard_registration _f_guard_regis(“f’, Xguard, ...);

int A::_g_guard(){ return 1; }

guard-registration _g_guard_regis(“g”, _g_guard, ...);

The above translation converts process interface functions to normal functions

and separates their guards to different guard functions. All these functions are local

to the newly derived class. A registration event is associated with each guard function

and is maintained by the runtime system. In order to realize the RFC semantics,

the preprocessor will generate a stub function as well as a registration event for each

process interface function, and such a registration information will also be maintained

by the runtime system. For example, the original process interface function f(...) is

translated to the following C-I-+ code:

int A::f(...){ ... }

_f_stub (...){
unpack message;
call f(...);

67

pack result;
decide process state (Return, ...);
return;

}

rfc_registration _f_regis(“f’, _f_stub, ...);

The translation procedure of process interface functions only tells one side story

of implementing the RFC semantics. For a complete scenario, we have to show the

C++ counterpart for RFC invocations. For example, suppose pa is a pointer to a

process object of type A, then statement

int i = pa—>f(...);

incicates a blocked RFC to function f(...) which will be invoked by the process

pointed by pa. The preprocessor translates such an RFC expression directly to the

following local function call:

int i = +(int*) cc_b_call(*pa, “f’, ...);

where cc_b_call(...) is a member function of the base class cc_process and its major

algorithm is:

char* cc_b_call(...){
pack the outging message;
operation = B_call;
swap to system;
unpack the returned message;
return results;

}

68

The final major consideration of the preprocessor is the way of translating a

process constructor. Similar to the procedure of translating interface functions, a

stub function and a process registration event is generated for each process type.

The stub function reflects the two-phase control semantics of a process object and

is triggered when the process object is created.

A::A(...){ ...}

void _A_ctor(...){
unpack message;
call constructor A(...);
while (has interface functions and not Terminate) {

receive an eligible RFC;
call the corresponding stub function;
swap to system;

}
}

process_registration _A_regis(“A”, _A_ctor, ...);

5.3 Run-Time System

The run-time system consists of a process scheduler based on context-switch and

an interprocess communication kernel. The process scheduler creates, schedules and

coordinates process objects. The interprocess communication kernel manipulates

communications within and between processors.

Communication between process objects are accomplished through synchronous

and asynchronous message passing. A set of communication primitives, such as

69

cc_block_send(), cc_unblock_send() and cc_receive(), are implemented in the IPC

kernel. The IPC kernel maintains two FIFO message queues, cc_m_queuel and

cc_m_queue2, for each process object. The first queue is used to hold incoming

messages (RFCs). When an RFC request taken from cc_m_queuel can not be exe-

cuted because of its false guard, the message is appended to cc_m_queue2, and will

be evaluated later. The same strategy is applied to cc_m_queue2 except that the un-

executable RFC’s will be appended to itself. When both queues are not empty, then

RFC’s in cc_m_queue2 have higher priority to be invoked than RFC’s in cc_m_queuel.

All process objects are created by the process scheduler. The process scheduler

maintains a scheduling queue. Each process object is inserted into the queue upon

its creation. The main() function is the root process object created when a program

starts execution. It is also the first element in the process queue. Process objects are

scheduled in FIFO order. Each process object may be in one of the eleven states:

Create, Creating, New_born, Ready, B_call, U.call, Forward, Block, Receive, Return

and Terminate. Whether a process object can be put into running or suspending

depends on its state. Figure 5.2 shows the possible state transitions of a process

object.

A process object starts execution from New.born and ends at Terminate. A

process object is eligible to run only if it is Ready. A process object may change its

Ready state to another state and then switches its control to the scheduler. On the

other hand, changing a process object state from others to Ready is made by the

process scheduler. Context-switch happens when a process object interaction occurs.

The frequency of context-switch is proportional to that of interactions among process

objects. The more the process objects interact, the more frequently the process

70

New.bor 1

Create

B_call

U-call

Forward

*■ Receive

Return

Termina

Creating

Block

Ready , Run

Figure 5.2: Possible state transitions of a process object

71

objects exchange their control threads.

The advantage of this scheduling strategy is that it guarantees that all process

objects involved in interaction have chances to execute in turn, although it does

not guarantee the execution order. The order of process object execution is not very

important as long as the logic order is correct, which is ensured by guards of accepting

RFC’s. The disadvantages of this strategy are that the overhead of context-switch

is significant if there are frequent unblocked RFC’s among process objects and that

it is not a fair strategy for computation-bound processes vs communication-bound

processes.

72

Chapter 6

Conclusions

Programming in C++ has taught us about sequential object-oriented solutions to

problems. However, it is inadequate for solving coordinated applications. Our pro-

posal, CC++, promotes the idea of concurrent computing. We emphasize the con-

sistence of semantics and syntax of the extended language.

The primary characteristics of CC++ are explicit processes, blocked and un-

blocked RFC’s, guarded functions, and forward-return mechanism. The pragmatics

of CC++ emphasize ease of program expression: only five new keywords are added

to the C++ vocabulary. Synchronization and communication among process ob-

jects are achieved by RFC mechanism. Guarded functions provide a concise way

of evaluating RFC’s either in a mutually-exclusive or indeterministic fashion. Un-

blocked RFC’s maximize the concurrency of process objects when they are involved

in communication instead of synchronization. Forward-return mechanism defers the

response to a caller by shifting the duty to another function which may be guarded

to expect a new state of the process object. Our examples show the simplicity,

readability and expressivity of CC++.

To compare CC++ against other languages based on C++ that have been dis-

cussed in chapter three, we list the major features of each language in the following

table.

73

Concurrent C++ UCH—h ACT++ CC++

Active object process task actor process-object

Passive object class-object class-object

coroutine

monitor

class-object class-object

Active object

creation

dynamic dynamic and

static

dynamic dynamic

Abstract

data type

class

process

class

coroutine

class

actor

class

process

Architecture distributed shared memory distributed distributed

Concurrency inter-process

(coarse-grain)

inter-process

(coarse-grain)

inter- and

intra-process

(medium-grain

at behavior-

level)

inter-process

(coarse-grain)

Communication synchronous &

asynchronous

msg-passing

(transaction

calls)

synchronous

communication

(routine calls)

asynchronous

msg-passing

(mail deliver)

synchronous &

asynchronous

msg-passing

(blocked and

unblocked

RFCs)

Sy nchroniz ation rendezvous rendezvous-

like

behavior

change

guarded func-

tion, blocked

RFC, and for-

ward return

Inheritance no inheritance

among process-

es or between

process and

class

no inheritance

among different

kinds of types;

no multiple in-

heritance within

same types ex-

cept class types

no multiple in-

heritance among

actor classes

multiple inhe-

ritance among

same types and

from class to

process

Polymorphism no overloaded

transactions

overloading al-

lowed but not

distinguished in

invocation

no overloading

in actor class

both virtual &

overloading

allowed in

processes and

classes

From this summary, we can see that the most significant differences among the

four languages exist in inheritance and polymorphism. For example, Concurrent

74

C++ does not support inheritance among processes or between process and classes.

/iC++, which provides five pre-defined data types, only supports single inheritance

from the same type. Multiple inheritance or inheritance from different types are not

supported. In addition, function overload is not distinguished by a server process

although function overload is syntactically allowed. Hence the function overload may

lead to unexpected results. ACT++ supports both single and multiple inheritance

from normal class to Actor class. However, it does not support function overload

in Actor classes. Furthermore, the become operation splits the coherent object

definition, which somewhat violates the spirit of object-orientation. CC++, how-

ever, supports multiple inheritance in process types and from class types to process

types, in addition, CC++ supports both virtual functions and function overloading

in process types.

A restriction of CC++ is that the language is not suitable for real-time applica-

tions because it does not have any mechanism to handle emergency. For instance, a

process object in execution can not be interrupted. If a process object sent a mes-

sage to another executing process object, the earhest response from the receiver is

the time after the execution of current function.

Inheritance remains to be a research topic in further work. Currently, CC++

allows inheritance within the same user defined types. It also allows that process

types inherit from class types. However, It does not allow class types inherit from

process types. This restriction is forced by the following reasons. First, there is a

difficulty for C++ compiler to handle a class that is derived from a process type

because the process type may involve some new language components such as “un-

block” , “create” and “forward”. Secondly, we have not found a reasonable semantics

75

explanation of inheritance from process types to class types. For instance, what is

the semantics of “unblock”, “forward” and “create” when they are inherited by class

types? How to get rid of the guards of RFCs in derived classes? In a word, to allow

a class inheriting from a process will require a change of syntax and semantics of the

original class type in C++.

CC++ is designed to be a practical, usable, concurrent object-oriented program-

ming language. An experimental compiler of CC++ has been developed. The run-

time system of CC++ consists of a process scheduler based on context-switch tech-

nique and an IPC (Inter-Process Communication) kernel. The first version of CC++

system does not cover all the features discussed in this thesis. An efficient implemen-

tation and a detailed experimental study of different concurrent programs in CC++

are our future research directions.

76

Bibliography

[AdH90]

[Agh86]

[Agh90]

[And83]

[And91a]

[And91b]

[Bae91]

[BDSY92]

J. K. Annot and P. A. M. den Haan. POOL and DOOM: The Object

Oriented Approach, Collected in Parallel Computers: Object-Oriented,

Functional, Logic. John Wiley &: Sons, 1990.

G. Agha. A Model of Concurrent Computation in Distributed Systems.

MIT Press, 1986.

G. Agha. Concurrent object-oriented programming. Communication

of the ACM, 33(9):125-144, September 1990.

G. R. Andrews. Concepts and notations for concurrent programming.

ACM Computing Surveys, 15(l):3-43, March 1983.

G. R. Andrews. Concurrent Programming: Principles and Practice.

The Benjamin/Cummings Publishing Company, Inc., 1991.

G. R. Andrews. Paradigms for process interaction in distributed pro-

grams. ACM Computing Surveys, 23(l):49-89, March 1991.

D. Baezner. Language design for parallel simulation. University of

Calgary, Master Thesis, 1991.

P. A. Buhr, G. Ditchfield, R. A. Stroobosscher, and B. M. Younger.

uc-f+: Concurrency in the object-oriented language c-|--t-. Software:

Practice & Experience, 22:137-172, February 1992.

77

[BHJL86]

[Boo91]

[BR89]

[Bri89]

[BST89]

[CC91]

[Das86]

A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure in the

emerald system. Technical Report TR86-04-03, Department of Com-

puter Science, University of Washington,Seattle, Washington, 1986.

G. Booch. Object-Oriented Design With Applications. The Ben-

jamin/Cummings Publishing Company, Inc., 1991.

J. Briot and J. Radeld. Design of a distributed implementation of

abcl/1. In Proceedings of the ACM SIGPLAN Workshop on Object-

Based Concurrent Programming, Sept. 1988, San Diego, CA, SIG-

PLAN Notices, volume 24, pages 15-17. ACM, April 1989.

J. Briot. Actalk: a testbed for classifying and designing actor lan-

guages in the smalltalk-80 environment. In Proceedings of European

Conference on Object-Oriented Programming(ECOOP’89), 1989.

H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages

for distributed computing systems. ACM Computing Surveys, 21:262-

322, September 1989.

R. S. Chin and S. T. Chanson. Distributed object-based programming

systems. ACM Computing Surveys, 23(1):91-124, March 1991.

P. Dasgupta. A probe-based monitoring scheme for an object-oriented,

distributed operating system. In ACM Proceedings of the Conference

on Object-Oriented Programming Systems, Languages and Applications,

pages 57-66. ACM, 1986.

78

[DC89]

[Dij75]

[DMCB+89]

[DS89]

[Gar70]

[Gel85]

[GR86]

W. J. Dally and A. A. Chien. Object-oriented concurrent program-

ming in cst. In Proceedings of the ACM SIGPLAN Workshop on

Object-Based Concurrent Programming, Sept. 1988, San Diego, CA,

SIGPLAN Notices, volume 24, pages 28-31. ACM, April 1989.

E. W. Dijkstra. Guarded commands, nondeterminacy and formal

derivation of programs. CACM, 18(8):453-457, August 1975.

A. Di Maio, C. Cardigno, R. Bayan, C. Destombes, and C. Atkinson.

Dragoon: An ada-based object-oriented language for concurrent, real-

time, distributed systems. In Ada-Europe International Conference,

1989.

B. A. Delagi and N. P. Saraiya. Elint in lamina: Application of a con-

current object oriented language. In Proceedings of the ACM SIGPLAN

Workshop on Object-Based Concurrent Programming, Sept. 1988, San

Diego, CA, SIGPLAN Notices, volume 24, pages 194-196. ACM, April

1989.

M. Gardner. The fantastic combinations of john conway’s new solitaire

game ’life’. Scientific American, 223(4):120-123, October 1970.

D. Gelernter. Generative communication in linda. ACM Transaction

Programming Language Systems, 7:80-112, January 1985.

N. H. Gehani and W. D. Roome. Concurrent c. Software: Practice &

Experience, 16:821-844, September 1986.

79

[GR88]

[HA 79]

[Han73]

[Han78]

[HC87]

[Hew77]

[Hoa74]

[Joh75]

[KL89a]

N.H. Gehani and W. D. Roome. Concurrent C++: Concurrent pro-

gramming with class(es). Software: Practice & Experience, 18:1157-

1177, December 1988.

C. Hewitt and R Atkinson. Specification and proof techniques for seri-

alizers. IEEE Transactions on Software Engineering, SE-5(1), January

1979.

B. Hansen. Operating System Principles. Englewood Cliffs, NJ:

Prentice-Hall, 1973.

P. B. Hansen. Distributed processes: A concurrent programming con-

cept. CACM, 21(11):934-941, November 1978.

J. H. Hur and K. Chon. Overview of a parallel object-oriented lan-

guage chx. In European Conference on Object-Oriented Programming

Proceedings, pages 265-273, June 1987.

C. Hewitt. Viewing control structures as patterns of passing messages.

Journal of Artificial Intelligence, pages 323-364, June 1977.

C. A. R Hoare. Monitors: An operating system structuring concept.

CACM, 17:549-557, October 1974.

S. C. Johnson. Yacc: Yet another compiler-compiler. Technical Re-

port 32, Bell Laboratories, 1975.

D. Kafura and K. H. Lee. Act++:building a concurrent C++ with

actors. Technical Report TR89-18, Department of Computer Science,

80

Virginia Polytechnic Institute and State University, 1989.

[KL89b]

[KM90]

[Les75]

[LH93]

[Li89]

[LM89]

[Man89]

[Mel89]

D. G. Kafura and K. H. Lee. Inheritance in actor based concurrent

object-oriented languages. In Proceedings of the 1989 European Confer-

ence on Object-Oriented Programming. The British Computer Society,

1989.

T. Korson and J. McGregor. Understanding object-oriented: A unify-

ing paradigm. CACM., 33(9):40-60, September 1990.

M. E. Lesk. Lex - a lexical analyzer generator. Technical Report 39,

Bell Laboratories, 1975.

X. Li and H. Huang. On the concurrency of c-f—|-. In The 5th Interna-

tional Conference on Computing and Information, 1993.

X. Li. CSP* - A Distributed Logic Programming Language for Discrete

Event Simulation. PhD thesis, University of Calgary, 1989.

M. G. Lane and J. D. Mooney. A Practical Approach to Operating

Systems. PWS-KENT Publishing Company, 1989.

G. Manning. A peak at acore, an actor core language. In Proceedings of

the ACM SIGPLAN Workshop on Object-Based Concurrent Program-

ming, Sept. 1988, San Diego, CA, SIGPLAN Notices, volume 24, pages

84-86. ACM, April 1989.

P Mello. Concurrent objects in a logic programming framework. In

SIGPLAN Notices, volume 24, pages 37-39. ACM, April 1989.

81

[MNC+91]

[Nel91]

[NYT+89]

[Pok89]

[Tho89]

[Weg89]

[Weg90]

[YC89]

[YT87]

G. Masini, A. Napoli, D. Colnet, D. Leonard, and K. Tombre. Object-

Oriented Languages. Academic Press, 1991.

M. L. Nelson. Concurrency & object-oriented programming. ACM

SIGPLAN Notices, 26(10):63-72, October 1991.

T. Nakajima, Y. Yokote, M. Tokoro, S. Ochiai, and T. Nagamatsu.

Distributed concurrent Smalltalk, a language and system for the inter-

personal environment. In Proceedings of the ACM SIGPLAN Workshop

on Object-Based Concurrent Programming, Sept. 1988, San Diego, CA,

SIGPLAN Notices, volume 24, pages 43-45. ACM, April 1989.

B. P. Pokkunuri. Object-oriented programming. SIGPLAN Notices,

24(11):96-101, November 1989.

D. Thomas. What’s in an object? BYTE, pages 231-240, March 1989.

P. Wegner. Learning the language. BYTE, pages 245-253, March 1989.

P. Wegner. Concepts and paradigms of object-oriented programming.

OOPS Messenger, 1:7-87, August 1990.

K. Yoshida and T. Chikayama. A’um = stream -f relation. In SIG-

PLAN Notices, volume 24, pages 55-58. ACM, April 1989.

A. Yonezawa and M. Tokoro. Object-Oriented Concurrent Program-

ming. MIT Press, 1987.

82

